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A Numerical Simulation of the Full
Two~-Dimensional Electrothermal
De-Icer Pad

Konstanty C. Masiulaniec

SUMMARY

The ability to predict the time-temperature history of
electrothermal de-icer pads is importait in the subsequent design of
improved and more efficient versions. These de-icer pads are installed
near the surface of aircraft components, for the specific purpose of
removing any accreted ice., The proposced numerical model can
incorporate the full two-dimensional geometry through a section of a
region {i.e., section of an airfoeil, e=c.), that current one-dimensional
numerical codes are unable to do. Thus, the effects of irregular
layers, curvature, etc., can now be ac:ounted for in the thermal
transients. Each layer in the actual geometry is mapped via a
body-fitted coordinate transformation _nto uniform, rectangular
computational grids. The relevant hea: transfer equations are
transformed and discretized. To model the phase change that might occur
in any accreted ice, in an enthalpy fo:mulation the phase change
equations are likewise transformed and discretized. The code developed
was tested against numerous classical and numerical solutions, as well
as against experimental de-icing data on a UHIH rotor blade obtained
from the NASA Lewis Research Center in Cleveland, Ohio. The excellent
comparisons obtained show that this coile can be a useful tool in
predicting the performance of current de-icer models, as well as in the
designing of future models.
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CHAPTER 1 INTROCUCTION

The formation of ice on the exterior surfaces of aircraft has a
considerable effect on flight performance, as it increases drag and
decreases lift. Thus an aircraft must be designed with the equipment
necessary for ice removal or prevention. Basically, aircraft ice
protection systems can be classified as either anti-icing or de-icing.

The anti-icing principle involves tha prevention of ice formation
on the protected area at all times. Typical anti-icing methods make use
of chemicals and/or the passage of hot blezed air through channels below
the surface on which ice formation is to be prevented. In contrast,
de-icing involves the periodic removal of accreted ice by mechanical or
thermal means. For ice removal systems, attention must also be given to
uniform shedding of the ice. Itagaki [1] elaborates on the dangers of
non-uniform shedding. Various de-icing methods that have been
investigated include pneumatic boots and thermal techniques. The latter
consists of cyclic heating of discrete elsments by electrothermal means.
The energy requirements are significantly less for de-icing systems than
they are for anti-icing systems. From experimental studies,‘Stallabrass
[2] concluded that the electrothermal method has the most advantages as
a de-icing mechanism, although it does have some maintainability/
reliability problems. Werner [3] has also reported that the
electrothermal de-icing technique is the most commonly used method, and

that it has been applied to both fixed ard rotary wing aircraft.



The objective of an electrothermal de-icing system is to raise the
composite blade surface/ice interface temperature above the melting
temperature of ice, resulting in a very thin interfacial layer of liquid
which reduces the ice adhesion to the blade surface. Aerodynamic and/or
centrifugal forces can then readily sweep the unmelted ice from the
surface. A typical electrothermal de-icer pad is essentially a
composite body consisting of (1) a metal substrate (the aircraft blade),
(2) an inner layer of insulation, (3) a heating element, (4) an outer
layer of insulation, and (5) an abrasion shield. Figure 1-1 depicts a
two-dimensional cut-away view of the typical construction of an
electrothermal de-icer pad, as well as a representative set of materials
and thicknesses used for fabrication. The cross-section shown
represents a view of the heater pad normal to the run of the heating
elements.

The heating element usually employed in an electrothermal de-icer
pad consists either of a woven mat of wires and glass fibers or of
multiple strips of resistance ribbon. The gaps which exist between the
heating elements can reduce the effectiveness of the heating pad
de-icing performance, causing non-uniform melting of the ice. The two
insulation layers, which usually consist of a resin impregnated glass
cloth, serve to provide electrical insulation for the heating element.
In order to direct more heat flow toward the ice layer, it is necessary
to use a greater thickness for the inner insulation than for the outer
insulation. The abrasion shield serves to protect the de-icer pad from
rain erosion as well as dust/sand erosion, and to provide more uniform

heating, thus minimizing cold spots above the heater gaps.



Ice
Liquid
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AT
Insulation Heater
2;;/ ‘2;;/
Substrate ////////i:;//////i:;;;%ffffi;
i
Layer Material Trickness Diffusivity
(Hr) (Ft2/1n)
Substrate 755-T6 Aluminum 0.087 1.65
Inner
Insulation  Epoxy/Glass 0.050 0.0087
Heater Nichrome 0.004 0.138
Outer
Insulation  Epoxy/Glass 0.010 0.0087
Abrasion
Shield 304 Stainless 0.012 0.15
Ice 0.250 0.0445

Figure 1-1 Typical Materials and Construction of an Electrothermal
De-Icer Pad



The ability to predict the performance of an electrothermal de~icer
pad is essential to the design and subsequent fabrication of these
units. To accomplish this, some method of determining the
time-temperature history throughout the pad needs to be developed.
Figure 1-2 provides a pictorial representation of an electrothermal
heater section that is part of an airfoil, with some indication of the
nature of the thermophysics involved. Clearly, the conduction of energy
is three-dimensional in nature, and occurs in a curved, composite body.
The temperature plot to the right of the figure provides a gualitative
representation of a typical temperature distribution. The temperature
is highest at the heater center, drops rapidly under the heater (where
the insulation is thickest) and less rapidly in the direction of the ice
(where the insulation is thinest). Development of an analytical model
for such a problem is virtually impossible. A numerical model is more
realizable, but even this is somewhat impractical, unless some
simplifications are made to the geometry and the thermophysics.

Figure 1-3 illustrates three alterations of the full de-icing problem,
each having different degrees of problem simplification. The
one-dimensional model is the simplest. In this model, all layers are
assumed to be planes infinite in extent. The temperature at a given
location is assumed to be constant throughout the plane containing that
point. It is generally assumed that the layers are in perfect thermal
contact and that they have constant material properties.

Stallabrass [2] appears to have been the first to attempt a
numerical solution of an electrothermal de-icing problem using a

one-dimensional model. His numerical scheme used an explicit finite
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difference method. Results agreed well with approximate analytical
solutions for relatively short real times into the problem. To account
for the effect of the phase change on the temperature transients within
the composite blade, the node at the ice-zbrasion shield interface was
held at the freezing temperature until the estimated heat flux into the
control volume containing the node was deemed sufficient to cause
melting.

Baliga [4] improved the numerical mocielling of the same problem by
handling the phase change heat transfer via a better approach, making
use of the high heat capacity formulation. Marano [5] further improved
upon Baliga's numerical formulation by applying the so-called enthalpy
method to model the phase change problem. Gent and Cansdale [6], solved
the same problem for conduction only (no phase change), and obtained

nearly the same results as Marano for concuaction only.

The two-dimensional problem, represented by the middle schematic in
Fig. 1-3, was solved by Chao [7] and DeWitt, et al. [8]. Chao's work
was a direct extension of Marano's one-dimensional numerical formulation
and procedures to two dimensions. Of funcamental importance, the effect
of the heater gap width on de-icing performance was studied
numerically.

Leffel [9) provided detailed experimental results of the thermal
transients induced by an electrothermal de-icing unit on a UH1H
helicopter rotor blade section. These experimental results were used to
validate the codes developed by Chao and Marano. The experimental
results revealed that when the layers of & helicopter blade are

sufficiently thin, and the curvature sufficiently gradual, Marano's



one-dimensional code yields excellent results over most of the blade.
Furthermore, it was found that there are two regions of potentially
substantial inaccuracies (depending on heater wattages, material
properties, etc.). These are at the immediate edges of the heater
banks, and in the region of large curvature at the leading edge of the
blade that wraps around the nose block.

Chao's code can model the heater edges, but it can not handle the
variable thickness introduced by the nose block, nor the high degree of
curvature. Thus, it is necessary to develop a model that can account
for these difficulties. This development is pictorially represented by
the third schematic of Fig. 1-3. The creation of a numerical code
capable of accurately predicting electrothermal de-icer pad thermal
transients in more complex regions of the blade is the topic of this
work.

Overview of Strategy to Solve Problem

The primary modelling difficulty that must be faced in this study
is that due to the irregularity of the blade-layer geometry. There are
essentially three approaches that can be taken to account for irregular
body curvature. The first is to overlay the irregular geometry with a
reqular grid. Those points not falling directly on the boundary will
require an interpolating scheme that must be incorporated either
directly or indirectly into the computational algorithms of the field
equations. There will undoubtedly be some degree of inaccuracy
introduced into the solution as a consegquence. If the solution desired
is in a region reasonably far removed from the boundary, this approach

will generally yield excellent results. If, however, the solution



desired is located at the boundary, the inaccuracies introduced may be
unacceptable. Such is the case in this problem, where the critical
temperatures and the initial change of phase occur at the boundary
formed by the abrasion shield and the ice layer. Moreover, this
approach is computationally quite time consuming.

The second approach is the finite elenent method. This technique
has become fairly common and affords many advantages in problems having
irreqular geometries. The standard method needed to achieve a solution,
however, is by an inversion of the appropriate system matrix. For
problems requiring a large number of elements, a large matrix develops.
The inversion of this matrix is generally nerformed by iterative means,
thus affording no computational advantage »ver other techniques. Also,
the formuation of the problem required for more complex governing
equations will involve the inversion of a multiple number of large
matrices for a "matrix statement" equivalent [10], [11] of the field.

In recent years, a finite difference alternative has arisen that
accurately models a boundary of irregular shape. By this method the
body (or bodies) in the physical domain is numerically transformed into
a rectanqular region in the computational plane. For a layered body,
the transformation produces a rectangle having the same number of layers
as the composite in the physical plane. This mapping procedure, known
as body fitted coordinate generation, was first developed by Thompson,
et al [12], [13], [14], [15], and has becomne widely used in numerical
simulations of field problems [16], [17], [18], [19], [20]. ‘The
principal advantage of the procedure is that any set of equations may be

numerically solved in a rectangular region on a uniformally spaced grid
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system. Thus, numerical interpolation between any irregular boundary
and adjacent interior grid points can be avoided. Figure 1-4 depicts
the mapping strategy involved for the problem at hand. The numerical/
computational strategy needed essentially reduces to a finite difference
solution of a series of stacked, rectangular slabs. The primary
disadvantage of this technique is the necessity of spacially
transforming those portions of any relevant equations having a spacial
dependency. Depending on the equations to be transformed, the resulting
set of equations may become much more complex. Obviously, this has the
potential of making a numerically stable set of algorithms more
difficult to obtain.

This work represents the first known attempt at solving a layered
heat transfer problem that includes phase change in an irregular
geometry. The following chapter develops the spacial transformation
equations, and the operators needed to transform the governing
equations. The conduction equations are then transformed in Chapter 3,
with the phase change equations being transformed in Chapter 4. These
transformed equations are then used to simulate an iced airfoil, and the

predictions are compared with experimental test data.
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CHAPTER 2 - BODY~FITTED TRANSFORMATION

In order to obtain a grid in the transformed plane a method with a
system of generating equations needs to be developed. The system of
equations that was used to generate the grid was Laplace's equations.
Virtually any partial differential equation can be used. Thompson, et
al. [15] presents alternatives by adding additional terms to Laplace's
equation that skews the grid in a desired direction where exceptionally
large gradients of a variable are expected. Laplace's equation was
chosen since this equation type is closest to the form of the equations
that was solved in the transformed plane. Thus, there are two
rectangular coordinate systems that are interrelated through the
equations that generate the grid in the transformed plane: x-y in the
real plane, and £-n in the transformed plane.

It should be noted that for composite bodies, each region must be
mapped separately to insure accurate modeling of the true geometry. The
initial step of the mapping is to assign boundary points in the real
plane, which become boundary conditions in the transformed plane. Thus
by mapping each region separately, more accurate geometric mddeling is
achieved. The assigned boundary points for two regions having a
boundary in common must be the same to insure a continuous grid
between regions. This makes the subsequent application of boundary

condition equations much less complex.
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Since the generating equation is initially written in the real
plane, an exchange of variables must occur to obtain an equivalent
set of equations in the tranformed plane governing the distribution of x
and y coordinates in that region. This is the set of equations that is
subsequently used to generate a grid. These equations will be developed

first, followed by a physical interpretation of the transformation.

Derivation of Body-Fitted Coordinate Transform Equations

The partial differential equation used to generate the grid in the

transformed plane, Laplace's equation, is written as

2% o

-3 + ==5 =0 (2-1)
2 pl

x dy

an 82n

—e= 4 === = 0 (2-2)

axz ayd

The first step in performing the required exchange of variables is to
establish derivatives for the inverse trarsform. In general notation

the inverse transform is represented as

f£(E, n) {(2-3)

x
]

y = g(§,n) (2-4)

The total derivative of each variable is

of of
dx = =-- d€ + == 4dn (2-5)
9k an
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dg dg
dy = == d& + -- dn (2-6)
9k an
Multiplying Eq. (2-5) by 3g/3n and Eq. (2-6) by 3 /3n and
subtracting yields
dg of ¥ 3g ag of
--3dx - -- dy = - == - == --] 4& (2-7)
an an 9t 3n 3t an
Similarly, Egs. {2-5) and (2-6) may be multiplied by 9g/93f and 9 /9E,
respectively, and subtracted to give
3g of dg f  3f 3g

--dx - -- 4y = == == = == ==} dn (2-8)
¥4 3k 3f 9an 3¢ 3n

The Jacobian of the transformation may be defined as

of of
9 an f dg dg of
J = = mm = = me - (2-9)
3g dg 3E 9n & 9n
3£ an

Inserting this into Egs. {(2-7) and (2-8) and rearranging produces

13g 1 of
df = - == dx - - -- dy (2-10)
J 3an J an
1 9g 1 of
dn=- - -- dx + - -=- dy (2-11)
J & J 3¢

Since £ and n are transforms of x and y, the derivatives of £ and n are

written as
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3k 3
df = == dx + --
x by
an in
dn = -- dx + --
% Yy

dy (2-12)

dy (2-13)

Comparing like multiples between Egs. (2-:0) and (2-12), and between

Egs. (2-11) and (2-13), yields the following quantities:

3E

ox

g

an

9x

Using these indentities, the

differential operators, i.e.,

] 3¢ 23
O 3x QdE
9 3t 3
—-— E e - +

dy By 3£

—

9g 1 9y

J on an

]

of 1

1 of 1 Ox

J 9§

3¢

Q

derivatives «

Ix

an

3E

an

a1 3 2

T T T el b (2-18)

& 9n J 30 9E J & 9n

(2-14)

(2-15)

(2=-16)

(2-17)

now be rewritten as

1 oy 3

an 3 1 % 3 1 9 3
B T (2-19)
d 9on J 9n 9E J 8E 3n
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1 ay 2

1

Z
J

3y

an

(

Similarly,

If the following are defined,

]
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13 3\/1 % 3 13 9
J 3E 3an/\J 3n 3E J 3 3n
Z BZ ay ay aZ ay Z aZ
e bl ey
3k 3E 3n 3E£an Ak an
(2-20)
aZ ax ax aZ ax Z aZ
el bl (2-21)
3f d9f 3n 3Ean oE Bn_J
as
3w\ ] a° 3 8x 3y dy a*
- __2 -2 —— m,m 4 - —- -————
on 9k 3E 3n 9 8n &N
y 2 52
£ an’ (2-22)
3 \2 3 2
- + | -- (2-23)
an an
dx 9x dy 3y
—— e 4 == em (2-34)
3& an aE 3n
ax Z ay Z
(--) + <--> (2-25)
3t 3
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Equation (2-22) becomes

3 3¢ 1 3* 3* 3%

’ A TN 28 ==== 4+ Y === (2-26)
ax dy J 3¢ dgdn an

Equation (2-26) can now be used directly to obtain the spacial field

equations needed to generate the coordina“e lines in the physical

plane. Beginning with Laplace's equation in the real plane as the

generating equation, these equations are

azx aZX 32x

@ =-g =28 —=== 4 Y ==3 = 0 (2-27)
3E 8Edn an
a2y a2y aZY

@ ==3 =2B —=== + Y ==3 = O (2-28)
3k 3EAN an

Because Eqs. (2-27) and (2-28) have the variable coefficients alpha,
beta and gamma in common (which are derivative functions of x and vy},
they are coupled and must therefore be solved simultaneously.

In order to formulate an equality of the normal flux boundary
condition in the transformed plane, a vec:or derivative transformation
needs to be developed. The unit normal t: any graph f(x,y) = c is given
by

ng = --=- (2-29)

> n

Ny = —--- (2-30)
| 7n|

+> Ve

Ng = —-=- (2-31)
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The solution of Egs. (2-27) and (2-28) results in a distribution of x
and a distribution of y in the solution plane. Thus, in order to
represent a unit normal vector in this plane, its 'orientation' in the
real plane must be accounted for. The general operator in the real

plane for a directional derivative is
3 + d >
V= - i+ -- 3 (2-32)
x dy
Applying Egs. (2-18) and (2-19) to Eq. (2-32), the general operator
in the transformed plane for a directional derivative is
1 dy 3 dy 9 »> ox 3 & 3 >

i E U RSyl (2-33)

v:—
J an 9¢ 9E 3an & 3n oan 3¢&

It should be noted that the directional derivatives are needed in the
real plane, but are being represented by information that is contained
+ >

in the transformed plane. Thus, the symbols i and j refer to the real

plane and do not need to be transformed.

Using Eq. (2-33), Vn and V&€ clearly become

1 ¥ & x -

== [= == i+ - 3 (2-34)
J & 13
1 ¥y  » x *

VE = - -— i- -3 (2-35)
J on an

In the next section a physical interpretation of the coefficients alpha,
Eq. (2-23), and gamma, Eg. (2~25), and how they are related to arc

lengths of c¢ells in the physical plane will be presented. It will be
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shown that
1 v\ %3
lvn} = - -] +{-- = --- (2-36)
J X3 3k J
e
1 (7 ax \4 Vo
| v} = - -] +{-- = --- (2-37)
J on an J
L

Hence, utilizing Egs. (2-34) through (2-37). Egs. (2-30) and (2=31)

become

+ 1 ¥ o M »
N, o= --- - i+ == (2-44)
Y 3¢ 13
* 1 dy  » X
Np = —-- — i == ] (2-45)
ya an an

Ur = —= i+ == 3 (2-40)

Applying Eqs. (2-18) and (2-19) yields the temperature gradient along

any point in the transformed plane as

1 dy 97 3y OT\ »

[ R

J an 9 9r an

3 9T 3 OT\ »

T R R I

3E 3n R-14 (2-41)
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The gradient of temperature normal to a line of constant n becomes

aT +
-—-—— = n . VT
n
ann
1 3y ES %( >
R - - 1 + - ] [ 2
Y 3E ¥ 3

—— e e - - + —— e = wm- -

1 dy 9T dy 9T\ 5 x T ox 9T\ 4
3n Af 3£ 3n & 9n an 3L

Z Z

1 9% dy 9T
= m——— - + | -- - 4
Y £ ag an
x Ix 3y 9y aT
- S Ul -
3E an Af an 3F
1 oT aT
T - Y -_— =R L.
J/y an 3 (2-42)

‘The gradient of temperature normal to a line of constant £ becomes

3T >
-—— =N . VT
F
anE
1 3y > ax +
T o ——— - i - - j [ ]
va an
1 3y ox OT \ »
- —— -— m L R
J an 3¢t d9f an 9t 3n an 3¢
1 x ‘
R - + | -- -+
J’a an an 3E

3 8x oy dy \ oT

- e e 4 e e |-

3E an 3F an/ 3n

1 oT oT
= em——- A == =8 —-= (2“43)
Jva dE an
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Equations (2-42) and (2-43) are those needed in formulating the normal

heat flux condition for a boundary common bectween two regions.

Physical Interpretation and Use of the Body Fitted Coordinate
Transformation

Blthough field equations are written in terms of physical plane
coordinates (x,y; r,® etc.), their analytical or numerical solution is
generally only convenient for a limited number of smooth, regular
geometries. If the geometry is irregular tlie solution in the physical
plane can become quite tedious. An irregular body can be mapped into a
much simpler shape by the use of a body fit:.ed ccordinate transfor-
mation, as shown in Figs. 2-1 through 2-3.

If the composite body is simply connect.ed it will have an interior
so0lid which requires a slightly different t:reatment. This is also
jllustrated in the bottom two rectangles of Fig. 2-3. Care must be
taken to match the edges of the rectangle w.th corresponding portions of
the interface for the layer which surrounds the solid.

The overall result of the transformation is the creation of a

series of connected rectangular strips. To generate the coordinate
system within these strips, two elliptic partial differential equations,
Eqs. (2-1) and (2-2), with Dirichlet boundary conditions are solved.
The field equations used to develop the coordinate system are Egs.(2-27)
and (2-28), which are the end result of the exchange of variables needed
for the transformed plane. The variable coofficients alpha, beta, and
gamma are defined by Egs. (2-23) through (2-25).

Figures 2-4 through 2-6 conceptually show the procedure needed to

generate a grid, and a sample of what the f.nal results might yield.



Figure 2-1:
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A General, Irregularly Shaped Composite

Body.
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Figure 2-2: Division and Separation of an Irregularly

Shaped Composite Body for Subsequent
Mapping in the Transformed Plane.
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A set of x~y coordinate pairs need to be identified for the boundaries
of a given region in the physical plane. These values are then assigned
to boundary points for a rectangular region in the transformed plane.
The distribution of x,y coordinates in the §,n plane are tied together
by the partial differential equation used to generate the grid.
Equations (2-27) and (2-28) are then solved simultaneously on the field,
with x and y coordinate values as the unkncwns. Upon convergence, the
solution yields a distribution of x and y coordinates within the field,
thereby accomplishing the goal of generating a grid. If the resulting
solution is in turn mapped onto the physical plane, its appearance would
take on the shape of a collection of quadrilaterals that approximate the
original regions. Thus, it can be seen that an improved approximation
is achieved as the number of boundary points chosen is measured,
especially on those portions of the boundary that have a high degree of
curvature. The numerical solution requires the same number of arbitrary
points on the inner boundary as on the outer boundary to maintain a
rectangular grid in the transformed plane. Also, composite or layered
bodies should have the same boundary points for shared boundaries, as
otherwise a temperature solution involving more than one region would be
very difficult to numerically implement. Figure 2-6 shows that for a
conduction heat transfer problem in the transformed plane there are
always three solution fields. The x and y solution fields are
determined first (which generates the grid), and then on this grid a
solution is obtained for a field equation(s) of interest. Thus, each

nodal coordinate for a specified value of ¢ and n has at least three
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values associated with it: an x coordinate, a y coordinate, and, in the
case shown, a temperature. All of these values at each node must then
be used to obtain temperature mappings in the physical plane.

The coefficients alpha, beta and gamma are functions of x and y.

In the final solution to the grid generaticn, there is also a
distribution of these three coefficients tlroughout the field. Thus,
these coefficients can change in value frorn point to point. The
physical significance of all the transformstion coefficients (including
the Jacobian) is illustrated in Figs. 2-7 through 2-10. Figure 2-7
shows an arbitrary quadrilateral drawn ont<¢ a square grid in the
physical plane. The midpoints of the opposite sides of the edges are
connected, which give essentially an averace "length" and "width" of the
quadrilateral. These dimensions are lablec¢ "b" and "a" in Figs. 2-8 and
2-9, respectively. All of the derivatives of x and y with respect to E
and N are taken as discrete, constant values through a quadrilateral
along the lengths a and b. It is inherent!y assumed that the lengths a
and b correspond to lines of constant & and n from the transformed
plane. The intersection of lines a and b represent, then, the
intersection of the lines £ and n for a given point that was part of the
iterated field in the transformed plane.

From reference to Figs. 2-7 through 2-10, it can be seen that the
Jacobian of the transformation is the area of the quadrilateral in the
physical plane. The square root of alpha is a measure of the average
quadrilateral length along the n direction in the physical plane. The
square root of gamma is a measure of the average quadrilateral length

along the F direction in the physical plane¢. And, finally, beta is a
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Figure 2-8: Physical Significarce of the Transformation
Parameter 'Alpha' in the Real Plane.
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Parameter 'Beta' in tne Real Plane.
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measure of the non-orthogonality of the quadrilateral as measured by the
mapping of the £ and n lines on the corresponding cell/quadrilateral in
the physical plane. Thus, the essential dimensions describing the
approximate shape of the guadrilaterals in the physical plane (which are
the square, uniform computational cells in the transformed plane) are
contained within the transformation parameters alpha, beta, gamma and

Jacobian.

Numerical Modelling of Body-Fit Transformation Equations

Solving the transformation equations in the computational plane is
essentially the same as solving any two field equations that are coupled
with Dirichlet boundary conditions. Equations (2-44)" through (2-50)*
show how the two field equations have been discretized. All second
order derivatives are approximated using three point central
differences, and all first order derivatives using two point central
differences. Note that the coupling of the equations occurs through the
transformation coefficients alpha, beta, and gamma. Equations (2-45)
and (2-47) can be solved for x(i,j) and y(i,j) to obtain the required
algorithms. Figure 2-11 illustrates a representative portion of the
computational grid that Eqgs. (2-44) through (2~50) were solved on,
explaining the indices i and j.

The iteration strategy is to first sweep through the x field,
holding all values of y at the value of the most recent iteration, and
then sweep through the y field, holding all values of x fixed from the

most recent iteration. The values of the transformation coefficients

*Because of their length, these equations are shown on the following
page.
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3% 3% ¢ “x
@ === =28 ——o= 4 Y ==z = 0 (2-44)
9E 3E3AN en
iv1, 541 7 oo+ Fier,5-1 7 Fia1,540
. 2 2
+ xi_1lj) A R
2
Ty 5+ ¥y -1 T 0 (2-45)
2 2 2
3y 3y 3y
@ —=3 = 2B —=== 4 ¥ =o5 = 0 (2-46)
3t 3EAN an
Yigr, 541 = Yi-1,941 0 Jis1,5-1 7 Tiar, 5
. , 2
+ y1_1'] e Sttt
2
- 2y, . oL =0 -
yl,] + yl,]-1 (2 47)
2 _ 2 2
3y i, 3+1 i,j- y1,3+1 yi,j-1
+ | -- = mmm e e B Y
an 2 2
(2-48)
¥ A Yi 541 T ¥i,5-1 Yien,5 T Yie1,g
an 3 2 2
Xi+1,3 Xi-1,3 Yi+t,5 Yi-1,3
4 eemeecccccmee—=s | meeceemcccce-ec=-
2 2
(2-49)
2 y _ P
dy 41,9 T *i-1,3 Yis1,5 T Ti-1,3
3k 2 2

(2-50)
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are updated for each point for every iteration to reflect the most
recent values of x and y, as the sweep thrcugh the field progresses.
This procedure continues until all values ¢f x and y are settled i.e.,
they no longer change to within some specified error.

Prior to the beginning of the iteraticn, a linear distribution
between any two opposing boundary values wes assigned to all the field
points as an initial quess. This not only reduces the needed CPU time,
but also assures that there will be no divide check errors during the
first sweep of the field. Also, once convergence has been achieved, the
values of the transformation parameters for the boundary points are
calculated for use in the boundary condition algorithms. The derivative
values needed are calculated using one-sided differencing. Appendix A

contains a computer listing of the key subroutine written in Fortran.

Verification of the Transformation Code/Alqgorithms

In order to verify the accuracy of the coordinate mapping, use will
be made of the fact that an analogy exists between the spacial transform
solution and a solution of a field equation that has the same form as
the mapping equations. To make the compar.son, Laplace's eguation for

steady state conduction was used:

em 4 === = 0 (2-51)

This equation was solved analytically for the case of two concentric

cylinders having fixed temperatures at the inner and outer surfaces.



38

The solution to the problem is well known, and is given in terms of

radial coordinates by

T(r) = (T4-Ty) ----- + T (2-52)

Using this equation the radial location for a specified temperature may

be written

r = rg - (2-53)

For an inner and outer radius value of 1 and 9 feet, respectively, and
an inner and outer temperature of 400 and O degrees Farenheit,
respectively, the locations of the isotherms in 40 degree Farenheit
increments were calculated, and are listed in Table 2-1. Those radius
values for temperature increments of 10 degrees Farenheit are listed in
Table 2-2. From a numerical point of view, these two tables represent
exact values for a fine and coarse mesh. Listed along side these values
are the final results of a spacial transform to map the given circular
cylinder. The output for the mapping on a 41 x 41 grid can be found in
Appendix B, and the output for the 11 x 11 grid in Appendix C. Note
that each coordinate point has an x and y value associated with it.
Knowing that the boundary points were assigned with the region centered

on the origin of an x-y coordinate system, these values can be easily
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converted into an equivalent radial location. This task is much simpler
if values are chosen along the x or y axis. The radial locations can
then be picked off directly.

Because the generating equations used are Laplacian in form, there
is an exact analogy between the resulting » and y distributions and the
location of isotherms, where those isotheriis are equally spaced (i.e.,
each grid point outward from the inner bou:ndary represents an equal drop
in the number of degrees Farenheit). The percent error between the two
solutions presented in Tables 2-1 and 2-2 clearly shows increased
accuracy with a finer mesh. The error for an 11 x 11 grid drops from a
maximum of 7.13% to a maximum of 0.40% for a 41 x 41 grid. The error,
as would be anticipated, increased with increased distance from the

boundary where the temperature is known.



TABLE 2-1

Isotherm
Value
(°F)

0
10
20
30
40
S0
60
70
80
S0

100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

40

ACCURACY OF ITERATED SPACIAL VALUES FOR TWO
CONCENTRIC CIRCLES USING A
41 x 41 GRID

Analysis
Radius Value

9.0000
8.5189
8.0636
7.6326
7.2246
6.8385
6.4730
6.,1270
5.7995
5.4895
5.,1961

4.9184
4.6555
4.4067
4,171

3.9482
3.7371

3.5374
3.3483
3.1694
3.0000
2.8396
2.6878
2.5442
2.4082
2.2795
2.1576
2.0423
1.9331

1.8298
1.,7320
1.6394
1.5518
1.4689
1.3903
1.3160
1.2457
1,179

1.1161

1.0564
1.0000

Program
Radius Value

9.0000
8.5155
8.0573
7.6240
7.2141

6.8263
6.4596
6.1127
5.7845
5.4741

5.1804
4,9026
4.6397
4.391

4.1558
3.9333
3.7227
3.5235
3.3350
3.1566
2.9878
2.8282
2.6771

2.5342
2.3989
2.2709
2.1497
2.0351

1.9266
1.8240
1.7268
1.6348
1.5478
1.4655
1.3875
1.3137
1.2439
1.1778
1.1153
1.0560
1.0000

%

Error

0.0000
0.0399
0.0781

0.1126
0.1453
0.1784
0.2070
0.2333
0.2586
0.2805
0.3021

0.3212
0.3393
0.3540
0.3668
0.3773
0.3853
0.3929
0.3972
0.4038
0.4066
0.4014
0.3980
0.3930
0.3861

0.3772
0.3661

0.3525
0.3362
0.3169
0.3002
0.2805
0.2577
0.2314
0.2013
0.1747
0.1444
0.1102
0.0716
0.0378
0.0000
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ACCURACY OF ITERATED SPACIAL VALUES FOR TWO

CONCENTRIC CIRCLES USING AN 11 x 11 GRID

TABLE 2-2
Isotherm
Value Analysis
(°F) Radius Value
0 9.0000
40 7.2246
80 5.7995
120 4.6555
160 3.7371
200 3.0000
240 2,4082
280 1.9331
320 1.5518
360 1.2457
400 1.0000

Program
Radius Value

9.0000

3.4757

2.,7860

2.2463

1.8211

1.4341

1.2154

1.0300

%

Error

0.0000

2.8665

4.9280

6.2807

6.9947

7.1333

6.7228

5.7938

4.3626

2.4323

0.,0000
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Since the spacial transform essentially maps an irregular region
into a collection of quadrilaterals, the distribution of transformation
coefficients can be used as a check on the accuracy of modelling the
entire geometry. Table 2-3 shows this comparison, where the overall
values of thickness, circumference and area of the annulus are
calculated by summing the appropriate coefficient values. The largest
error for both grid sizes is in the approximation of the circumference.
This is to be expected, since the curvature is being approximated by a
series of straight lines. Again, the finer mesh provides a much more
accurate modelling of the geometry. The largest error is reduced from
6.46% to 0.419%. The error in radius for a 41 x 41 grid is slightly
larger than for an 11 x 11 grid. This is attributable to round-off
error, as only single precision was used in the numerical code.

This comparison and verification demonstrates the accuracy of the
spacial transformation subroutine. However, it also points ocut the
possibility of large errors entering the solution of a field equation if

the grid that is used is not sufficiently fine to accurately model the

region.
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TABLE 2-3 ACCURACY OF SPACIAL TRANSIFORM BASED ON PHYSICAL
SIGNIFICANCE OF TRANSFORMZTION COEFFICIENTS COMPARED
TO ACTUAL VALUES OF THE REGION IN THE PHYSICAL PLANE
Physical
Significance Parameter 11 x 11 GRID 41 x 41 Grid
Radius I Yo 7.9999 7.9880
(Rg-Rji) a 0.001% | 0.025%
Actual Error Error
Value 8.0000 8.0000
Circunmference Ty 52,9006 56.3162
(2WRO) Y 6.451% 0.419%
Actual Error Error
Value 56.5486 56.5486
Area LJ 235.1146 250.2978
2 2 J 6.450% 0.409%
("[Rg-Ry 1) Actual Error Error
Value 251.,3274 251.3274
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CHAPTER 3 TRANSFORMATION OF CONDUCTION PROBLEM

Transformation of Governing Conduction Equations

Any field equation solved in the transformed plane containing terms
having a spacial dependency must have those terms transformed in the
same fashion as the spacial coordinates £,n were developed. The form of
the conduction energy equation used in this study is:

T 9 T 3 ar
bcp == = ==|k == |+ ==k == ]+ g {3-1)
dt 3 3x dy dy
In the problems considered the thermal properties of the materials are
assumed to be constant; hence, Eg. (3-1) can be rewritten as
aT 3% 3%
Ocp;;=k -3;-‘+-a;2 + g (3-2)
To transform the above equation, the transformation operator developed

in the previous chapter, Eq. (2-20), is required, i.e.,

3% % 5* 3% 3°
—a;—z + —a}—,-z = ;-Z a ;;-2 ~-2R -;-E-a:‘ + Y -a:]-z (3-3)
where
3 Z 3y 2
a={--] +]-- (3-4)

an an
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3 dx  dy Jy
R P (3-5)
3E 9n 3f in

¥ 2 3y Z
Y={--) +[-- (3-6)
3¢ 13
3x dy dy I
and J = = mm = o= - (3-7)

af an 3 3n

Applying Eq. (3-3) to Eg. (3-2) yields:

3T k aZT BZT aZT
pe, == = =% | @ ==z 2B —o— 4 Y -=2 | + g (3-8)
P s 42 3e? 3EdA an?

This is the transformed energy equation that must be solved

in the transformed plane.

Transformation of Boundary Condition Equat:.ons

There are two basic methods that can be used for treating an
interfacial boundary condition. One is to equate normal heat fluxes and
the other is to perform an energy balance on a control volume that

includes the boundary, i.e.,

+ > . 0
X(VTen)ds + g dv = -- (OCPT) dav (3-9)
v v ot
v

For a square of rectangular geometry, application of Eq. (3-9) is
relatively straightforward. An approximation of Eq. (3-9) can be
derived without any special treatment of the interface, and the

resulting discretized equation can be cast into simple algebraic form.
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To apply the above energy balance to a square cell or control
volume in the transformed plane is not as straightforward, however.
Equation (3-9) must undergo the same spacial transformation as
described above. To apply the resulting transformed equation to a
control volume in the computational plane is poésible, but the added
complexity makes the task quite prohibitive.

Another way of "visualizing” the task is to apply Eq. (3-9)
directly to a control volume in the physical plane that has been
"unmapped" from the computational plane. Figure 3-1 shows how the
resulting cell might appear in the real plane. As can be seen, each
cell around the boundary has a different configuration.
Computationally, customizing Eg. (3-9) to each cell around the boundary
is not easily accomplished, even with a knowledge of the approximate
cell geometry and configquration from the transformation parameters at
each point. Accuracy needs to be preserved to as great an extent as
possible, while maintaining a reasonable degree of computational
simplicity. Thus, Egqs. (2-42) and (2-43), which can be used to equate
normal heat fluxes through a given boundary point along a line of
constant £ or N, shall be used for the boundary conditions between two
adjacent regions.

The boundary conditions for two regions in perfect thermal contact

require that there be equality of temperature and normal heat flux:

T =T (3-10)
! I 2 I
aT 3T
ky -- =k, -- (3-11)
an an
! I 2 I
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Figure 3-1: A Boundary Contrcl Volume as it Might Appear
in both the Physical and Transformed Planes.
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On the other hand for an exposed surface, energy conducted to the

surface is convected away; therefore,

% - =h (T, - T,) (3-12)

Since the boundary equations contain normal derivatives that are
functions of space, a transformation operator is required that will
provide an expression for the temperature derivative normal to the

surface at a specified point in the real plane. From Chapter 2, these

are
] 1 oT T
-- = —mmm Y o= -8 - (3-13)
i |To a line of JVY an ok

constant n

3 1 aT aT
-- = ———— a-- -8 -- (3-14)
an |To a line of Jva 3k an

constant £

On the presumption that the boundary is along the upper or lower edge of
the transformed plane (a line of constant n), Eqs. (3-11) and (3-12)

become, respectively,

Yy or| B ar|
Kq | wcme == - ew—- - =
J/y  on Jvy 3
I |1/

Yy or| B dr|

ky| ==== -- - —— -

J/y  3n J/y g

1 /2 (3-15)

K [ === —- - ==== -=] |= h(Tg - T,) (3-16)
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Equations (3-15) and (3-16) are the transformed layer surface boundary

equations that must be solved in the transformed plane.

Numerical Differencing of Conducting Equations

Figure 3-2 shows a section of the grii in the transformed plane.
In order to accurately difference the cross-derivative terms in the
diffusion equation, all eight nodes surrounding the node being iterated
for must be involved in the differencing. Applying second order central

differences to all derivatives in Eg. (3-9. yields

2 pCp k41 N P 3 k
Ji,5 === (Ti,5 = Ti,3) = QM) a5 (Tieg,5 - 2T 5 + Ti-q,5)
kAt
B,k X K K

- === Tien, 341 7 Tign, 5.1t Ticn,5-1 - Tio1,341)
2

k Kk k .
* Y, (Tig+1 = 2Ty 5 + Ti5-1)

k+1 k+1 k+1
+ M 5,4 (Ti+1,j - 2Ti,j + Ti-1,j)

Bi,9  k+1 K+1 <+1 K+1
- ==t= (Tie1, 541 = Tien, -1 * Tio1,5-1 = Tioq,j41)
2
2 .
.y k+1 k+1 k+1 Ji,j a
i,J (Ti,j+1 - 2Ti,j + Ti'j_1) + --}:-—— (3-17)

It should be noted that a weighting factor M has been used in order that
the algorithm may become anything from purely implicit (M equal to zero)
to purely explicit (M equal to one). When M is equal to 0.5, the

algorithm becomes the Crank-Nicholson scheme. Appendix D contains a
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Ti1,5+1 Ti,3+1 Tiv1, 541
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Ti-1,3 i3 i+1,
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T. . .. . .
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o o ¢
> -
Figure 3-2: Grid Index Notation for Solution of Diffusion

Algorithms in Transformed Plane
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listing of the subroutine that solves for tlie conduction problem
utilizing Eq. (3-17).
Upon differencing, the boundary condition for equality of normal

heat flux at a solid boundary becomes:

Y. .
i,s Bi 1 Ti+1,1 = Ti-=1,1
ki,s """"" (Ti,2 T1,1) - SoseSoonTS TTSsEssoTTETTTT
Ji, 1Y Ji, 1Y 2
upper
i,jmax ( )
= K; soay | mmm—mo—m===—---- T , T
i,jmax ~—— i,jmax i,jmax-1
Ji,jmax i,jmax
Bi,jmax Ti+1,imax Ti-1,jmax
ettt S DDt bkttt (3-18)
J; - AN 2
i,jmax’ 1i,jmax
lower

The algorithm for a convective boundary corndition is similar to

Eq. (3-18), except that the left or right hand side is replaced by

h (Ti’1 - Ty) or (Ti,jmax - T,), dependirg on whether the convective
boundary is on the upper or lower surface c¢f the grid. Appendix E

contains a listing of the subroutine that solves for the normal flux

boundary condition using Eq. (3-18).

Verification of Numerical Modelling

A. One Zone, Steady State

The problem used to verify the algorithm for conduction in a single
layer under steady state conditions is conduction in offset cylinders.
The exact solution to this problem is found in Eckert and Drake [21].

Computed isotherms for a cylinder with an cuter radius of 0.3048 meters
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(1.0 feet) held at 37.78 degrees C (100 degrees F), an inner radius of
0.0457 meters (0.15 feet) held at 537.78 degrees C (1000 degrees F), and
an eccentricity of 22.86 millimeters (0.75) feet are shown in Fig. 3-3
(straight line). For a grid consisting of 17 x 17 nodes, the numerical
values are in excellent agreement with the analytical values.

The largest error to be found between any two values was less than 0.1%.
Thirty-seven seconds of computing time was needed to obtain a converged
result on an IBM 4341,

The eccentric cylinder problem was also solved analytically for the
case involving uniform internal heat generation by El=-Saden [22]. This
problem was numerically solved for the case where energy was being
uniformly generated at the rate of 20.7 kilojoules per second - cubic
meter (2000 BTU per hour - cubic foot). Figure 3-3 compares the exact
to predicted temperatures on the lines £ =1, £ =6, and £ = 8, These
coordinate lines represent cuts in the transformed plane at 0, m/2, and
T respectively. Again there is excellent agreement, with the maximum

error being less than 0.5 %,

B. Multiple Zones, Steady State

The steady state temperature distribution in four concentric
cylinders was obtained and compared to the elementary analytical
solution for this problem. Table 3~1 lists the parameters used for this
problem,

Table 3-2 presents the predicted temperatures as compared to the
analytical values at three interfaces for various convergence criteria.

The surface temperature of the inner cylinder was held at 1000 degrees



53

L1

UOL}eUdUdY JB3H FNOYILM PuR YILM

SA3puL|A) 395440 - SILNSIY UOLIeILILU3A 3PO)

(u) u3buad 83RULPAOO) PAUWMOYSURL]

E|

€

€1 11 6 L g £
T T ! T  — T T

Apn3s juadssdd O
Leor3feuy ———

295/0% ¥669°02 =,,0

'g-¢ b4

00T
021

oyt

091

081

00¢

022

ove

092
08¢

00¢

(4o) 8SLY Sunjeuadws)



54

Inner Outer Thermal
Radius Radius Conductivity

Layer R; (mm) Ry (mm) k(kJ/hr=-m=°C)

1 1000 800 155.77
2 800 700 249,23
3 700 500 18.69
4 500 300 93.46

Table 3-1: Parameters Used in the Multiple Zone Steady
State Verification Problem



55

Table 3-2: Code Verification Resulte - Interface Temperature
Solutions for Concentric Cylinder Problem

Analytical Num, 1 Num. 2 Num. 3 Num. 4 Num. 5
(°C) (°C) (°C) (°C) (°C) (°C)
100.00 100.00 100.00 100.00 100,00 100,00
150.69 173.25 158.3 155.6 154,0 153.3
169,65 196.0 178.5 175.4 173.5 172,74
806.60 815.1 809,72 808.9 808.4 808.15

1000.00 1000.00 1000.00 1000.00 1000.00 1000.00

Spatial

Convergence 0.0001 0.0001 0.0001 0.0001 0.000M

Ternp. Field

Convergence 0.1 0.1 0.1 0.1 0.1

Boundary

Convergence 0.1 0.1 0.05 0.02 0.01

CPU Time

IBM 4341 1:29 3:31 3:52 3:58 4:00
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C, while the surface temperature of the outer cylinder was held at 100
degrees C.

The error for the innermost boundary is 2.61 degrees C, for the
middle boundary 3.09 degrees C, and for the outermost boundary 1.55
degrees C. The largest error for numerical solution 5 is less than 1.8
percent. The above solutions were obtained on an 11 x 11 grid for each
layer. Fiqure 3-4 displays a graphical representation of the numerical
solution. 1In light of the relatively coarse grid used, the agreement is

excellent.

C. One Zone, Time Dependent

Jakob [23] developed exact solutions for three one-dimensional time
dependent heat conduction problems: for the temperature transients in
an infinitely long square bar; for the temperature transients in an
infinite medium with a circular hole; and for the transient temperature
response of a hollow cylinder within an infinitely thick wall. &all
three of these exact solutions were used as a means of establishing the
accuracy for the numerical solution of the time dependent conduction
equation,

The exact solution developed by Jakob for the infinitely long
square bar was for the case where the outer surface was suddenly
subjected to a step change in temperature. Table 3-3 compares the
numerical results, in dimensionless form, with those presented by Jakob.
For the numerical solution, a diffusivity of 0.929 square meters per
hour (10 square feet per hour) was used with a 0.2286 meter square bar.

The temperature field was initially at a uniform value of -12.222
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Table 3-3: Code Verification Results - Center
Temperature Response of an Infinitely
Long Square Bar

at 9o %
=3 -- - % error
Jakob (23) Numerical
0.032 1.000 0.998 0.126
0,080 0,951 0.935 1.600
0.100 0.901 0.893 0.849
0.160 0,715 0.711 0.530
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degrees C (10 degrees F). Three minutes ani fifty seconds of CPU time
on a NAS 6650 was required to produce the results on a 17 x 17 grid,
with convergence on space of 0.00001 and on temperature of 0.001.
Convergence was defined as the absolute value of a simple difference of
the old and new iterated values.

The exact solution for the case where there was a step change in
temperature at the surface of a circular hcle in an infinite medium was
also solved by Jakob. Obviously, it is not possible for the present
computer code to simulate an infinite medium. To approximate this case,
concentric cylinders were used with an outer radius of 3.048 meters
(10.0 feet) and an inner radius of 0.3048 meters (1.0 foot). The
numerical solution will be valid up to the point where the initial
thermal wave reaches the outer boundary. For the numerical problem, a
diffusivity of 0.9290 square meters per hour (10.0 square feet per hour)
was used. The field was initially set at 37,78 degrees C (100 degrees
F), and the surface of the hole was suddenly raised and maintained at
537,78 degrees C (1000 degrees F). The results obtained are displayed
in Table 3-4. One minute and 57 seconds o° CPU time on a NAS 6650 was
required using an 11 x 11 grid with tolerance on space of 0.001 and on
temperature of 0.01. Convergence was defined as the absolute value of a
simple difference of the old and new iterated values. Note that even
with the relatively coarse mesh and loose tolerances (as compared to the
previous problem) for this single region problem, there is excellent
agreement with the analytical results.

The exact solution for the transient temperature response for a

hollow cylinder within an infinitely thick wall was solved for the case
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Table 3-4: Code Verification Results - Heat
Flux at Surface of a Circular
Hole in an Infinite Medium
at qs qs
-3 ———— ———— % error
s KL 8¢ kL 6g
Jakob (23) Numerical
0.01 38.51 38.79 -0.72
0.1 14,13 14,53 -2.83
0.6 7.29 7.40 -1.53
1.0 6.18 6.28 -1.61
2.0 5.03 5,13 -2.00
3.0 4.49 4,61 -2.00
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with the cylinder having a 1.0 foot radius. To approximate the infinite
plate, two concentric cylinders were used with the outer radius set at
10.0 feet. The numerical solution should be unaffected by this false
outer boundary up to the point where the initial thermal wave reaches
the outer boundary. The thermal diffusivity used was 10.0 square feet
per hour. The temperature of the plate wis initially set at 100 degrees
Farenheit, with the temperature of the inrer radius wall suddenly raised
to 1000.0 degrees Farenheit at time equal to zero. Figure 3-5 compares
the predicted temperature just inside the hole to the exact value
presented in Jakob. The computed values zre for an 11 x 11 grid with a
time step of 0.001 hours. Approximately two minutes of computing time
were needed to advance the problem 1000 time steps on an IBM 4341,
Considering the coarsness of the mesh usec, the results are

outstanding.

D. Two Zones, Time Dependent

Jaeger [24] developed an analytical solution for the time dependent
temperature distribution in a two-layered circular cylinder. The two
concentric layers were in perfect contact and had different thermal
properties. Initially the temperature throughout both layers is
uniform. At some instance in time, the inner surface of the inner layer
is subjected to a step change in temperature. The temperature of the
external surface of the outer layer is held at the initial temperature,
Jaeger did not consider internal heat generation in the solution.

The closed form solution presented by Jaeger is somewhat tedious to

apply. It involves a series solution that necessitates the use of
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eigenvalues. The eigenvalues needed are tlie roots of a somewhat complex
algebraic statement containing Bessel func:ions. Berger [25] developed
a computer program that numerically implements the closed form solution
developed by Jaeger. Berger's program was run for a case solved by the
transformed time dependent conduction equa:ion. This comparison is thus
a check for the time dependent algorithm a-d boundary condition
algorithm for two thermally dissimilar lay:rs.

For the problem solved, the inner cir-ular layer had a conductivity
of 0,2014 x 10‘5 BTU per inch-second-degrez F, a diffusivity of 0.4
square inches per second, an inner radius »>f 2.0 inches and an outer
radius of 5.0 inches. The outer layer had a conductivity of
0.3278 x 10’“ BTU per inch-second-degree F, a diffusivity of 0.2 square
inches per second, an inner radius of 5.0 inches and an outer radius of
9.0 inches. The initial temperature was 100 degrees F, with the
internal surface of the inner layer being suddenly raised and maintained
at 1000 degrees. These particular properties were chosen to duplicate a
problem solved by Berger.

Table 3-5 shows a comparison of the temperature rise with time at
the interface of the two circular layers. Two comparisons are shown,
one with both layers being represented by an 11 x 11 grid, and one with
both layers being represented by a 31 x 3° grid. As can be seen, when
both layers are represented by the finer «rid, the agreement is
excellent, with a maximum error of 3.08 percent occurring 3.5 seconds
into the problem. The error decreases wi=h additional time into the
problem because the rapid temperature increases begin to slow down, as

the problem advances toward the steady stite solution. It should be
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Table 3-5: Comparison Between Exact and Numerical Solutions
of the Interface Temperature of a Circular Cylinder
with Two Layers

Time Interface Temperature
(sec) (°F)
11 x 11 31 x 31
Grid % Grid %
Exact in each Error in each Error
layer layer
0.0 100.00 100,00 0.00 100.00 0.00
0.5 100,00 100.11 0.1 100.01 0.01
1.0 100,75 103.06 2.29 101.05 0.30
1.5 105,91 113,22 6.90 107.18 1.20
2.0 117.11 130.11 11.10 119,63 2,15
2.5 133.03 151,27 13.71 136.70 2,76
3.0 151.87 174.57 14,95 156,47 3,03
3.5 172,24 198,62 15.32 177.54 3.08
4,0 193.22 222,62 15,22 199.03 3.01
4.5 214,25 246,11 14.87 220,39 2,87
5.0 234,96 268,83 14,42 241.34 2.72
6.0 274,75 311.61 13.42 281,33 2,39
7.0 311.88 350.72 12.45 318.44 2,10
8.0 346.25 386,41 11.60 352.67 1.85
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noted that although a coarse 11 x 11 grid wes adequate to determine the
transient response of a single layered circular cylinder, the grid is
too coarse to provide accurate results with the addition of a second
layer; a considerably finer grid is required. This problem can become
worse as additional layers are added, requi-ing finer and finer meshes
to provide acceptable accuracies. It shouli also be noted that the
interface in this problem is near the center of the two fixed
temperature boundaries. Thus the errors at this location represent the

maximum errors in the solution fields at a given instant in time.

E. Multiple Zones, Time Dependent

No closed form solutions have been found in the open literature for
treating a time-dependent problem of a body with three or more layers
which also contains a heat source. However, numerical solutions to such
problems exist and these can be used for code verification.

Stallabrass [2], Baliga [4], Marano [>], and Chao [7), using
different numerical approaches, have each solved a one-dimensional
time-dependent problem of a six layered sliab with one of the layers
generating heat. Table 3-6 lists the dimensions, materials and
properties of the six layers used to verify the present code. Figure
3-6 presents the results of computations for a time step of 0.00{
seconds with a grid having 14 nodes in the 755-T6 aluminum, 4 nodes in
the heater, 7 nodes in the upper insulaticn, 9 nodes in the stainless
steel and 33 nodes in the ice. It can be seen that the predictions are
in good agreement with results reported earlier.

It should be noted that to model thi; series of stacked slabs, the

present code used a set of concentric cir-ular layers with the inner
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Table 3-6: Materials and Properties Used in The Multiple
Zone, Time Dependent, Verification Problem
Thermal
Layer Material Thickness Diffgsivity
(mm) m /hr
1 755~T6 2.210 0.15329
Aluminum
2 Epoxy/glass 1.270 0.00081
Insulation
3 Nichrome 0.012 0.01282
heater
4 Epoxy/glass 0.254 0.00081
Insulation
5 304 Stainless 0.305 0.01394
Steel
6 Ice 6.350 0.00413
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layer having a large radius. Some of the small discrepancies in the
computed results are believed to be due to these geometrical effects.
The computational time needed to obtain convergent results on a NAS 6650
varied from two to ten minutes depending on the particular problem
considered. To obtain the results shown, minimum tolerances of 0.00001
on space and 0.0001 on temperature were required. Convergence was
defined as the absolute value of a simple difference of the old and new

iterated values.
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CHAPTER 4 TRANSFORMATION OF PHASE CHANGE PROBLEM

Overview of Phase Change Treatments

Solutions to phase change problems have long been a topic of study
in the technical community. The characteristic feature of any phase
change problem is the coupling of two temperature fields with a moving
boundary that not only separates the two fields, but propagates through
them. The propagating phase front makes the problem non-linear. Latent
heat effects and changes in thermal conductivity between phases increase
the non-linearity. Because of the non-linearity problem, only a few
exact solutions have been developed, and thece are for very restrictive
conditions.

Neumann's exact solution to this probler, presented in Carslaw and
Jaeger [26], was the first known successful solution of a phase change
problem. Neumann solved the problem for one dimensional phase change in
a semi-infinite region. The material was in.tially at or above the
fusion temperature, and suddenly experiences a step decrease in

temperature at the boundary.

Lin [27] has modified Neumann's developnent to obtain an exact
solution for a quasi one-dimensional problem in a region with a varying
cross-sectional area. To incorporate varying areas into the analysis,
Lin simplified Neumann's approach by assuming that the entire region
was at the fusion temperature, and by develcping the relevant equations

to solve for the interface velocity as a furction of time. These
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simplifications readily permitted the insertion of a transformed
position coordinate functio into the governing equations.

Cho and Sunderland [28] have extended Neumann's exact solution to
allow for variable thermal conductivity in both phases. It was assumed
that the conductivity varied linearly with temperature. The effect of
the phase change speed with conductivity variation was investigated in
some detail,

Solution of the classical phase change problem, as described above,
involves the calculation of the phase front for specified boundary
conditions. This problem may also be solved by prescribing the location
of the phase front as a function of time, and then determining the
boundary conditions needed as a function of time to produce the
specified phase front movement. This is known as the inverse problem.
Rubinsky and Shitzer [29] have developed the exact solution to the
one-dimensional inverse problem for any arbitrary function describing
the movement of the phase front. Previous solutions to the inverse
problem were for a specific function.

Gutman [30] has constructed an approximate analytical
one-dimensional sclution that attempts to account for the effect of
superheating or supercooling on the movement of the phase change front.
The resulting analytical form was found by matching the inner and outer
solutions to the problem. His method provides accurate results for a

very limited range of relevant dimensionless parameters.
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To date, there have been no exact soliitions developed for phase
change problems where the phase change front is a function of two space
coordinates.

Effort has been devoted recently towa:ds the obtaining of
analytical solutions by approximate methods. Ku and Chan [31] have
developed an artificial initial condition that accounts for the
temperature profile discontinuity at the piase change front. The
artificial condition permits solutions to -he resulting phase change
equations by using inverse Laplace transfo-ms. Depending upon which
side of the phase front line the artificial initial condition is
applied, a temperature distribution soluti:n can only be obtained for
one of the two phases. The technique has not been used to solve a
two-dimensional problem as yet, but the anilytical results applied to
one-dimensional problems compare well with existing solutions.

Zhang, Weinbaum and Jiji [32] have developed an approximate
analytical solution to a three-dimensional time dependant phase change
problem., The sclutions are limited to very; small Stefan numbers.
Results are presented for a buried pipe eximple. They combine a
quasi-steady approximation with a virtual “ree surface method to obtain
an axisymmetric solution for the region ar>und the pipe wall.
Singularities in the differential equations along the pipe would not
permit solutions close to the pipe wall.,

The analytical and approximate analytical solutions described
above result from the solution of partial differential equations.
There is another class of approximate techiiques that are based on an

integral formulation of a heat balance acroass the melt line. One of the
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earliest published works using this approach was by Goodman [33].
Goodman developed a number of approximate solutions for the
one-~dimensional problem for typical boundary conditions. Results were
found to compare well with existing solutions when the assumed
temperature profile was a quadratic function.

More recently, Wang and Perry [34]) have applied this technique to a
one-dimensional problem with initial superheat. This problem is
somewhat more involved, as there are two interfaces, one for the phase
change front and one for the superheat line. Excellent agreement was
obtained between the approximate solutions and a one-dimensional finite
element code constructed to duplicate the problem studied.

Virtually all of the available analytical models, whether exact or
approximate, are suffiéiently complex so that in most cases an alternate
procedure must be adopted. This, coupled with the fact that most of the
analytical models have demonstrated accuracy only for one-dimensional
problems, strongly indicates that any feasible two-dimensional solution
must be sought by alternative means.

Because of the nature of the phase change problem, the obvious
approach to take is a numerical implementation. By this method,
generally a fixed, uniform grid is laid over the problem domain. Three
equations are written. Two of these are conduction equations, one for
each phase. The third equation is an energy balance, incorporating any
latent heat effect, written across the phase change front. This
equation ties together the two conduction equations. The advantage to
this formulation is that the conduction equations have smooth,

continuous derivatives of all primative variables in their respective
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domains. This obviocusly enhances the likel:hood of a stable,

convergent numerical scheme. The primary disadvantage is in the
interpolation required at the phase front. As the problem advances, for
each increment of time, the phase front mus' be relocated. In most
instances the front will be between node po.nts. The diffusion
algorithms near the phase front then need tn incorporate derivatives
using the appropriate "shortened" lengths. Because of the numerous
interpolation calculations required, the conputer codes are somewhat
slow. Most of the current work using this approach is in the direction
of developing faster diffusion algorithms, »r making assumptions about
the thermophysics of the problem in order t» reduce the number of
interpolative calculations. Lazaridis [35] for example, obtained
two-dimensional solutions by treating the motion of the fusion front as
quasi-one-dimensional. Thus, the temperature gradients need be taken in
one direction only. This substantially redices the number of
interpolations needed. What is more, the r2sults show satisfactory
agreement with existing solutions.

More recently, finite element methods “ave been used to solve the
moving phase front problem on a fixed grid. O'Neill [36]) developed an
algorithm that can be used with standard fiiite element heat conduction
codes, using linear interpolation to locate the phase front within
elements. Yu and Rubinsky [37] have treatei the two relevant conduction
equations and the interfacial energy equation as independent governing
equations on a finite elemént mesh. The results of their computer
solutions agree well with other closed form solutions.

But even the finite element codes tend to be somewhat punitive with

respect to code execution time, because of the interpolation/iterations
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needed to track the moving melt front. Thus, numerical techniques have
been developed that have attempted to either circumvent, or completely
eliminate, the need for the interpolation caused by the phase front.

Numerical researchers have developed a number of ways of
circumventing the need for interpolation. These methods essentially
involve adapting the grid to the moving melt front. Prusa and Yao [38]
have solved a two-dimensional phase change problem of melting
around a horizontal cylinder. The problem is solved numerically in
cylindrical coordinates, using a radial spacial transform in the
governing equations that essentially "stretches" or "contracts" the grid
on either side of the phase front. The diffusion equations are then
applied to the "stretched" regions. Duda, et al., [39] present a
similar technique, calling it boundary immobilization. They also use a
stretching transformation, but in their analysis the location of the
phase front in transformed coordinates remains at a fixed location.

The effect, however, is essentially the same. The regions on either
side of the phase front are "stretched" or "contracted" to generate the
prescribed regions in transformed coordinates.

Rieger, Projahn and Beer [18] custom fit a grid by use of a body
fitted coordinate transformation. As the phase front moves with each
time step, a new grid is numerically generated using the phase front as
the upper boundary of one region and the lower boundary of the second
region. They also solve the problem of melting around a heated
horizontal cylinder.

Lynch [40] uses essentially the same strategy as Reiger, Projahn
and Beer [18], but applies a finite element mesh generator instead of a

body fitted coordinate transform.
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Although grid adaption eliminates the need for interpolation,
additional calculations are required to generate the new grid (or
function for the "stretching" transformaticn). The latter tends to
offset the gains made by the former. Numerical techniques that
eliminate the need to solve for the locaticn of the phase front
eliminate the need for not only interpolation, but also calculations for
adapting the grid, since a rigid, uniform mesh can be used. In order to
eliminate the need for any calculations for the location of the phase
front, the equations that govern the syster need to be reformulated.

The reformulation, depending upon the strategy used, may result in the
insertion of an additional approximation irnto the governing equations.

Kikuchi and Ichikawa [41] introduce a special integral
transformation that accounts for the discontinuity of the temperature
gradient caused by the phase change front, even though the location of
the front is unknown. This special integril transformation is known as
the freezing index. The equations used for iterating through the
temperature fields are developed by applying the freezing index integral
to the original set of governing equations. The algebraic set of
equations needed are obtained by discretizing the associated variational
form of the freezing index. Blanchard and Fremond [42] use a strategy
similar to Kikuchi and Ichikawa, except that they use the homographic
approximation to model the temperature discontinuity caused by the phase
front. In doing this they solve for a variational equality, instead of
the variational ineguality solved by Kikuchi and Ichikawa. The primary

advantage to the homographic insertion is that the originally
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non-differentiable change of temperature across the phase front becomes
differentiable.

In the heat conduction equation, temperature is usually considered
the dependent variable, with time and space coordinates the independent
variables. By an appropriate transformation of the conduction
equations, however, one of the space coordinates can become the
dependent variable, with temperature, time, and any remaining space
coordinates the independent variables. By specifying values of time,
temperature and one space coordinate (in a two-dimensional problem), the
values of the independent space coordinate can be iterated for. By
always specifying the same value of temperature at each time step, the
movement, or migration, of an isotherm with time can be tracked. Thus,
this technique is called the isotherm migration method. Crank and Gupta
[43] were the first to apply this technique to a phase change problem in
two dimensions. The advantages of this technique, in tracking a moving
isotherm at the fusion temperature, are obvious., Results predicted by
this approach have been found to be satisfactory, provided two numerical
idiosyncracies caused by the technique are circumvented. First, an
approximate method is used to calculate the position of the phase front
for a short initial time into the problem. After the initial time
interval, with an established isotherm, the isotherm migration algorithm
can be used. Secondly, depending upon the geometry and/or the
thermophysics of the problem involved, the independent space coordinate
can become a multi-valued solution to the algorithm containing the

dependent variables, where it is inappropriate.
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Saitoh [44] extended the two-dimensional isotherm migration method
from regular two-dimensional geometries to arbitrarily shaped, doubly
connected two-dimensional geometries. This: was accomplished by applying
the same radial "stretching" transformation as used by Prusa and Yao
[38] to the governing equations before exclanging the dependent and
independent variables. The numerical resu.ts obtained by this method
showed excellent agreement with experimental data.

Ozisikx [45] discusses the use of a moving heat source in the
conduction eguations to account for the latent heat effect. He presents
a mathematical development that explicitly casts the moving boundary
problem into a standard heat conduction proeblem with a moving heat
source. By doing this, the solution can irmediatedly be written in
terms of Green's function, and numerically implemented.

Another technique for eliminating the necessity of locating the
phase front, is use of the so-called high leat capacity method. 1In this
method, the latent heat effect of the phase change is approximated by a
large heat capacity over a small temperature range. This technique has
been in existence for a number of years, and has recently undergone
further development into more sophisticatec algorithms and applications.
Bonacina, et al. [46] have developed a three-time level implicit scheme
using the approach. The temperature depencent properties are evaluated
only at the intermediate time step, thus simplifying the solution to the
algorithms. The scheme was found to be unconditionally stable and
convergent.

Comini, et al. [47] present a similar analysis to the one above,

but for a finite element code using triangular elements, so that
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irreqular geometries could be accomodated. Morgan, Lewis and
Zienkiewicz [48] have improved this code by applying the technique with
qguadratic isoparametric finite elements.

Hsiao [49] modified the manner in which the specific heat was
calculated. He accounts for the latent heat, and determined the
physical conditions of the node, by using a linear interpolation of the
surrounding nodal temperatures. Using this linear interpolation,
excellent results are obtained for both one and two-dimensional phase
change problems with relatively large time steps and coarse mesh.

Uchikawa and Takeda [50] have applied the high specific heat method
to the irreqular geometry of a casting mold. 1In this analysis a
transform is used to turn the irregular regions into regular, evenly
spaced computational zones through the use of a body fitted coordinate
procedure. The governing equations, with the high specific heat method,
are then transformed and solved in the transformed plane.

One of the more recent techniques for eliminating the need to
calculate the location of the phase front is the enthalpy method. 1In
this method, the specific heat is combined with temperature to form an
enthalpy variable in the time dependent term in the diffusion equation.
Thus, both temperature and enthalpy are dependent variables. All of the
earlier two-dimensional models using this technique assumed that the
curve relating enthalpy to temperature had a finite slope. This is only
true, however, for materials that undergo a change of phase over a
temperature range. Shamsundar and Sparrow [51] have developed a
variation to the earlier two-dimensional models. Depending upon both

the temperature and the enthalpy of a given node, either temperature or
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enthalpy is the dependent variable. When the condition of a node is
such that a single phase exists, temperatur:« is the dependent variable.
When the enthalpy of a given node is betwee: the values of either phase
(a change of phase is occurring), the tempe-arure is known, making
enthalpy the dependent variable. This approach easily permits solutions
for substances whose change of phase occurs entirely at a single
temperature, as well as for those whose change of phase occurs over a
range of temperatures. shamsundar and Sparrow use an implicit finite
difference scheme to numerically implement the governing egquations.
They apply the technigue to PCM, a type of wax, that has relatively
iittle change in thermal conductivities between phases.

Crowley [52] applies an explicit finite difference scheme to an
enthalpy formulation that is equivalent to that of Shamsundar and
Sparrow. Crowley applies his algorithm to the solution of Saitoh's
problem [44), with water as the phase chanje substance. Even with the
large difference in thermal conductivities that water exhibits, the
numerical results agreed well with publishad experimental data for the
problem.

One of the drawbacks of the enthalpy formulation, particularly for
the case where the change of phase occurs at a single temperature, is
that a plot of temperature against time fcr a given node tends to
exhibit a “plateauing® effect or tendency. This arises out of the fact
that a computational grid models or represents a discrete region in
space. Obviously, it requires a finite anount of time to melt a
discrete region.. As a consequence of a node being held fixed at a

single temperature for a discrete amount of time, the effect is also
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felt by the surrounding nodes, causing a plateauing of the temperature.
Voller and Cross [53] developed a smoothing technique that can be
applied to a final set of numerical results. This smoothing technique
has the effect of bringing the time~temperature history of a given node
into excellent agreement with other published results.

Schneider and Raw [54] have developed a modified enthalpy model
that is capable of efficiently solving problems where multiple phase
change interfaces exist. For these types of problems their modification
reduces computational times by an order of magnitude. Thus, the
implicit scheme used here is only applied to one-dimensional Problems,
but they indicate that it can be easily extended into two dimensions.,

Voller [55] provides an alternate method of discretizing the
enthalpy formulation. In this approach, the sensible and latent
heat terms are discretized separately, thus isolating the non-linearity
of the problem as a nodal latent heat source term. His implicit
finite-difference scheme yields computational savings of twenty to fifty
percent,

Tacke [56] has developed a formulation of the enthalpy method which
removes the "plateauing" effect in the time-temperature history of a
node. This was accomplished by applying linearized temperature érofiles
near the phase front for those nodal control volumes containing the
front. His numerical solutions substantially reduced the Plateauing,
while showing excellent agreement with analytical solutions. The

linearization does increase the computational time required, but only

slightly.
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Recently, Schneider [57] has used the enthalpy form of the energy
equation, and, in the melted liquid region, coupled it with the momentum
equation to account for the effect of free convection effects on the
movement of the phase front line. The prollem is solved in a
rectangular-region, with a rise in temperatare occurring at only one
vertical wall. Boucheron and Smith [58] hi:ve solved essentially the
same problem, but they couple the momentum aquation throughout the field
for both phases. They specify for the sol:d phase a very high value of
viscosity in order to insure that the velocities arising from the
solution of the momentum equations in this region are negligible or
zero. This approach allows a more mathema*ically straightforward
treatment of the phase front.

Because of the relative ease of formu.ation, simplicity in
numerically discretizing the resulting equations, and proven accuracy
and stability, the enthalpy formulation wa: selected to solve the phase
change portion of the current problem. The irregular region is mapped
into a rectangle using a body fitted coord.nate spacial transform. The
governing equations must be similarly transformed, and solved on the
transformed grid. Writing a general "nume-ical" energy balance in the
transformed plane is virtually impossible. As was discussed in the
previous chapter, the square, reqular compitational cells in the
computational or transformed plane unmap i+to nonuniform, non-orthogonal
cells of varying area in the physical plan:. Consequently, the
transformed partial differential field equations were differenced rather
than developed by conservative principles. Because thermal conductivity

is not a constant for this problem, there ire two possible forms of the
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field equation, the conservative form and the non-conservative form,
which are mathematically equivalent. When treated numerically in the
same fashion, the result will be two algorithms that are not equivalent.
The rationale for selecting the equations type is the topic of the next
section.

Importance of Equations Type - Neumann Comparison

Since the energy balance at the phase change front is essentially
"buried" in the weak formulation of the phase change equations, the
discretized form of these equations can become important for an accurate
solution. One important distinction in equation form is conservative
versus non-conservative. The term "conservative" means that the
"purest” form of an equation is preserved or "conserved"; while
non-conservative means that some change has been made to the "pure" form
(i.e., differential operators have been carried through, etc.). This
difference in form for the enthalpy formulation is shown in detail

below.

Figure 4-1 depicts the two zones that need to be considered in the
traditional formulation of a phase change problem. The equations that

apply, if only thermal conduction with no density change is considered,

are:
Ty, 3 Ty, ) Ty
in ligquid Ppep =-= = == { ky, === + == | kg === (4-1)
region at ax Ix dy dy
3T 3 arg 3 o1
in solid PgCg —--— = -- kg === |+ == | kg --- (4-2)

region ot Ix x /¥y oy
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Solid

Melt Line
(mushy zone)

I—

Figure 4-1 The Two Zones needed in the
Traditional Formulation of
the Phase Change Problem
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8TS aTL
kS —_——— - kL - = OSVnA (4-3)
3n on
on f(x,y,t)=0
Ti(x,y,t) = T¢ 1 =s and L (4-4)
where n = outward normal to the interface, into
the liquid
Vp = velocity of the interface in the normal
direction
f(x,y,t) = function describing the interface

separating the solid and liquid regions

The above two field equations, coupled by an interfacial energy
balance, Eq. (4-3), can be reduced to a single non-linear field equation
that eliminates the need for any computation of the location of the
phase front. This is known as the weak formulation, and for phase
change problems is called the enthalpy formulation. The term "weak
formulation" means that less direct information is provided in the
solution of the equations (in this case, the location of the phase

change line). Thus, the weak formulation for this problem becomes:

oH 3 T 3 aT
p -~ = -- k -- + -- X -~ (4-5)
at dx ax 3y 3y
H
when H < Hsm ’ T = waa {4-6)
mS
and k = kg i
when Hgp, € H € Hm . T =Ty
H-Hsm
and k = kS + (kL - ks) _______ ; (4-7)
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and when H>Hyp, T="Ty - | ====- (4-8)

The above set of equations is much more eas:ly treated computationally

than the previous set. The location of the melt line can be determined

indirectly from the distribution of enthalp:es on the solution domain.
Equation (4-5) is written in the conse:vative form. If the

operators are carried through, Egqs. (4-5) becomes
2z z
9H 3T 3T & Ir ¥k T

p == =k == + K com 4 == == 4 == == (4-9)
at ax 3y Ix dy dy

and is now cast in a non-conservative form.

Written for the one-dimensional case, ¥gs.{(4-5) and (4-9) become,

respectively

8H 9 ar

p == = =-- k == (4-10)
ot ox &

2

M 3T dk oT

p-- =k =g b == - (4-11)
ot ax ax x

If a simple explicit differencing proc:dure is applied per the

general one-dimensional grid depicted by Fij. (4-2), Egs. 4-10 and 4-11

become
k+1 k+1
gl - Bk 1 kKyae1 + k5 x4 k+1
p | ==—mmommme = —mm-z | mmmmeee (Tj+1 - T3 )
At (Ax) 2
(4-12)
k+1 k+1
kj + kj-T k+1 k+1
- m———————— (T] - Tj'1 )
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Figure 4-2 General Grid Used for One-Dimensional
Explicit Differencing
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k+1 k+1 k+1 k+1
S I = =—--s k (T - 2T + Ti.1)
2 Jj +1 -1
At (8x) ) ) )
k+1 k+1 k+1 K+ 1 {(4-13)

where the superscript k denotes the time step and the subscript j the
nodal location. The algorithms obtained by using Egs. (4-12) and (4-13)
are clearly not equal to each other since thermal conducting varies as
the phase changes. Error is introduced into any mathematical system
when that system is numerically discretizec. The errors introduced by
the algebraic expressions in Egqs. (4-12) and (4-13) are obviously
different, with one contributing potentially more error than the other.

As the difference between conductivity increases between phases, so
does the potential disparity between Egs. 4-12 and 4-13, especially for
a computation with a node undergoing a charge of phase. For this case
the melting node would be bounded by at least one all liqu’d node and at
least one all solid node. It should be noted that for constant
conductivity between phases, Egs. (4-12) ard (4-13) reduce to
identically the same algorithm. The problem arises only with a change
in conductivity with phase in the discretized equations.

It should also be mentioned that in the traditional formulation for
phase change, this problem cannot occur, regardless of whether the
conservative or non-conservative form of the equations are differenced,
since conductivity is constant in a given zone. The problem arises in
the weak formulation of the equations where the location of the

discontinuity is "buried" within the field eguation.
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Equations (4-12) and 4-13 can be checked for accuracy by comparison
with an approximate analytical solution developed by Neumann and
presented in Lunardini ([59].

Figure 4-3 depicts the problem solved by Neumann. The problem can be

formulated as:

3Ty 1 AT
——-A-- = e mw- (4_14)
3x ¢ o 3t
Z
9 TL 1 aTL
_—.—— T emem - (4_15)
Ix ¢ o, ot
Limit (Tg,) = T, (4-16)
X *+ ®
Tg (0,t) = Tgyrface (4-17)
where Tgyurface > Tt
at the interface
Tg (x,t) = Ty (x,t) = T¢ (4-18)
and
3Ty Ty, dx
kg === - Kk, === = PA -- (4-19)
9% Ix ot

In the solution of Egs. (4-14) through (4-19), if the initial
temperature of the liquid is T¢, and the melt distance into the problem

is small, the solution can be approximated by:

X = \[==—mmmmmmmm e {(4-20)

Tables 4-1 and 4-2 show in detail the numerical computations for

solving the one-dimensional phase change problem using the explicit
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Solid - Region 1 Liquid - Region 2
TO _____________ -
Te = o= o e e
f Phase
Change
Interface
T
S X
x =0 x = X(t)

Figure 4-3 Schematic for the Phas: Change Problem
Solved by Neumann
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EXPLICIT ALGORITHM FOR 1-D CONSERVATIVE EQUATION:

k K
K. +K.
k+l _ K st J+170) -k k
A R T A Y S
k. k k -k
% i
kJ j-1 (TJ TJ-l)]
TIME | B¢ ah pk+1 Kk Kk
sec. BTU/1bm BUT/hr-ft-°f
0.0 0.00 0.00 0.00 1.4160 1.4160
0.1 0.00 26.04  26.04 1.4160 1.2164
0.2 26.04 23.05  49.09 1.2164 1.0398
0.3 49.09 20.39 69.48 1.0398 0.8834
0.4 69.48 18.05 87.53 0.8834 0.7450
0.5 87.53 15.98 103.51 0.7450 0.6227
0.6 103.51 14.14 117.65 0.6227 0.5143
0.7 117.65 12.51 130.16 0.5143 0.4184
0.8 130.16 11.08 141.24 0.4184 0.3335
0.9 141.24  9.80 151.04 0.3335 0.3200

Melt Time for this Node Per
the Neumann Solution: 0.7456 sec.

Error {using interpolated time): 7.37%

Table 4-1 Numerical Computation for the Conservatively
Differenced Phase Change Equation
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EXPLICIT ALGORITHM FOR 1-D NON-CONSERVATIVE EQUATION

e 0 B i
T

Time HK oM pk*1 KX K+l

(sec) (BTU/1bm) (BTU/hr-ft-°F)

0.0 0.00  0.00 0.00 1.4160  1.4160
0.1 0.00  34.26  34.26  1.4160  1.1534
0.2  34.26 26.38  60.6%  1.4160  0.9512
0.3  60.64 20.31  80.95  0.9512  0.7955
0.4 80.95 15.64  96.69  0.7955  0.6567
0.5  96.59  12.05  108.64  0.6567  0.5833
0.6  108.64  9.28  117.92  0.5833  0.5122
0.7 117.92  7.15 125.07  0.5122  0.4574
0.8  125.07  5.50  130.57  0.4574  0.4153
0.9 130.57  4.23  134.80  0.4153  0.3828
Lo 134.60  3.26 138.06  0.3828  0.3578
1.1 138.06  2.52 140.58  0.3578  0.3386
1.2 140.58  1.92  142.5C  0.3586  0.3238
1.3 142.50  1.49  143.95  0.3238  0.3200

Melt Time for this Node per
the Neumann Solution: {.7456 sec.

Error (using interpo1atedvtime): 74.35%

Figure 4-2 Numerical Computations for the Non-Conservatively
nifferenced Phase Change Equation

>
J
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conservative and non-conservative algorithms. The calculations are
performed for water as the phase change substance, and are done to
determine the required melt time for the first node only. Figure 4-4
provides a schematic of the problem solved. Tables 4-1 and 4-2 provide
further insight into the nature of the numerical error that is
introduced into the solution.

For the algorithm based on the conservative form, the heat flux
must be written at each edge of the node. To estimate the thermal
conductivity at the node edge, the average is taken of the
conductivities of the two nodes having a common edge. The conductivity
of the node "j" is determined by a linear interpolation between the
solid and liquid conductivities, depending on the percentage of the node
that has melted. For the algorithm based on the non-conservative forn,
no averaging is needed since the first order derivatives are evaluated
based on values of the two adjacent nodes, which never change until the
*jthr node needs to be updated, depending on the percent of the node
that has melted.

As the node "warms up" and melts, both solutions track each other
with good agreement., The solutions begin to diverge, however, during
the melting of the last third of the node. The non-conservative
differencing underpredicts the heat flux entering node "j", Clearly,
approximating the conductivity derivative, or, the change of
conductivity through three nodes, is less accurately modelled in
non-conservative differencing. Averaging the conductivities between
nodes for the edge, and using these averages in a flux derivative, is a

much better numerical approximation. Note that the relative error
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= 0.320 BTU/hr-ft-°F
=T +30°F@¢t=0

Figure 4-4: Schematic, with Properties, of One-Dimensional
Grid Used to Obtain Solutions Presented in Tables
4-1 and 4-2.
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between the two methods, just in a first node calculation for this crude
discretization, differ by an order of magnitude. Using a smaller mesh
or finer time step does not improve the approximation appreciably.

Figures 4-5 and 4-6 show the numerical results of Egs. (4-10) and
(4-11) for a Neumann class of problems. The solutions plot the movement
of a melt front with time. At the start of the problem, all the nodes
are solid and at the fusion temperature. Suddenly, one edge of the
region experiences a step change in temperature, and is held constant at
that temperature. The substance under consideration is water, which has
a difference in conductivity between the two phases of approximately a
factor of four. Solutions are plotted for step changes in the edge
temperature of 10, 20, 30, 40 and 50 degrees Farenheit above the fusion
temperature.

For this problem, which solves for the melt front passing through a
number of nodes into the grid, the Crank-~Nicholson implicit
finite-difference scheme was employed in the numerical implementation of
Egqs. (4-10) and (4-11). This scheme was chosen for the two-dimensional
problem because it is unconditionally stable for the conduction
equation, [60]. The solutions for the conservative and non-conservative
forms with Neumann's solution using Crank-Nicholson differencing
provides further justification for choosing the correct form for the
two-dimensional problem. Using the Crank-Nicholson differencing scheme,

Egs. (4-10) and (4-11) for the problem solved become:
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Figure 4-5: Comparison of Neumanr's Solution to the Enthalpy

Equation Differenced in Conservative Form
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Equation Differenced in Non-Conservative Form
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1 X k+1 k+1
H - H L kj+1 + ky k+1 k+1
L (S RN [ P (Tspq - T2 )
2 J+! J
At (Ax) 2
k+1 k+1
ki o+ ky-1 k+1  k+1
- e —e———- (Ty - Ty.1) ] (.5)
2
L ky41 + Ty , k k)
N e T Ti41 = T
Z j+1 ]
(&%) 2
k k
k] + kj_1 k K
- ———————— (Tj - Tj_1) (.5) {(4-21)
2
pR+1 - ok 1 k41 k+1 Kl ke
p [ ==-=----- = -z ks (T 2T + Ts_q)
Z 3 J+1 J -1
At (4&x) ’
k+1 k+1 k+1 k+1
(kj.,.] - kj-1)(Tj+1 - Tj_1)
4 mmmmmm—eemeem——e———o—me e (.5)
4
! Xk X K
+ ===-- | k3 (Ty4q = 2Ty + T]_1)
(&%)
K k k k
(k3+1 - kj_1)(T]+1 - Ty-1)
T (.5) (4-22)
4
k+1 k+1
when Hgp < Hy € Hpp Ty = Tn
k+1
k+1 Hy = Hgnp
and X5 = kg + (K = kg)  =mo------- (4-23)
Hpm = Hsm
k+1
k+1 k+1 Him - Hy
when Hy > Hyp T4 = Tp +  =====--==-=
L,
k+1 (4-24)
and kj = kg,
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All second order derivatives are approximated using three point
differencing; all first order derivatives using two point differencing.
Gauss-Seidel iteration was used so that the temperature profile with the
effect of the phase change could be obtained at any time step.

As can be seen from Fig. 4-5, Crank-Nicholson differencing of the
conservative form of Eq. (4-5) yields results that compare favorably
with Neumann's approximate analytical solution. However, the agreement
deteriorates with increasing values of the step change temperature.
This is to be expected, since if all numerical criteria for a
computational zone remain constant, a more rapidly changing solution
with real time is apt to be less well approximated by the derivatives.

The large error introduced into the solution by differencing the
non-conservative form of Eg. (5-4) is very apparent in Fig. 4-6. The
error (defined as the difference between Neumann's value and the
numerical value divided by Neumann's value) is fairly consistent, and is
equal to approximately 100 percent through the entire solution. The
numerical solution shows about twice the amount of time needed to
achieve a desired melt distance than that predicted by Neumann's
solution,

In the numerical simulation of the weak formulation of the phase
change equations, attention needs to be given to the conservative and
non-conservative forms of these equations. For the particular problem

at hand, clearly the conservative form should be used.

Transformation of Phase Change Equations

Since the phase change equations will be solved in the transformed

plane, those pertions of the equations that have a spacial dependency
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must be transformed. Because it has been shown that the conservative
form of the field equation must be used, only the transformation
operators for the first order derivatives need to be used. From Chapter
2, the appropriate derivative operators ne~ded to effect the

transformation of the field equation are:

) 1 3y 3 Iy 9
-— = - == == - = == (4-25)
Ix J an 3¢ 3¢ an
] 1 x A * 3
- = - e {4-26)
3y J 3¢ 9n in J&
Applying these to Eg. (4-5) yields:
34 1 dy 3 3y @ dy T 3y 9T
p === == |l== == - -- -- K == == = k == ==
ot J an 3 3£ 3n an 2g 3g 3n
1 dx 9 x 9 dx oT 9 oT
+ - - - - - k == == =k == == (4-28)
J 3 3n an 9k 3E 3n an dE
Expanding Eq. (4-28) produces the followin.g:
ay aT 3y oT 3y aT
) kK == == 8 tk == == 3 [k == --
3w 1 dy an 3¢ dy 3g 3n dy an 3
0 == = m= | me mmcdccssrmcss - os messsssstmmes o - oo esesce-
a3 | an 3t an ] 3 3t an
3y aT 3x T 8x 9T
3 [k -- -- 3 [k -- -- 3 | x -- --
dy 3¢ an Ix 3E 3n ox an of
4 s 4 —= mmmmmmeme—mim = e emme— e —eeeme-
3¢ an 3t an o9& an
9x 9T x T
3 |k -- -- 3 |k == --
9x 3¢ In Ix In 9g
- —= mmeem—m——meee 4 == mmm—me——o——e- (4-29)
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D —m— = me | eam mcem mmemeccmccaso;me e me e EE e E e E e e G e Sh e e e -
3t J° | an an 3 In 3 3 3¢ 3n an
T oT T
0 kK =-- ] k -- ] kK --
dy 3y an Ix I an x 9x 35‘)
S 4 ~m o mmmmmemtt = oo e mmmaaa L
dF 3t an 3E aF an 3E 9n an
3T oT
8 | k -- 3 | x --
ax Bx < aﬂ) a‘x ax ( 8£>
e D (4-30)
an 3E Y3 an an 3L

T
2 2 3 -
oH 1 dy x 9t
P == = == - + _-—— ] ] eceeccamccaces
e g? an an Bt
oT
3 k --
<3y 3y ax 3x> 3?’\

T

an 3t an 9¢g

oT

3 -
<3y 3y 9x 3x> < 95)
- - - + —-— mem | meememeooe oo

3E 9n 9& an

9E 9k

But it was shown in Chapter 2 that

ay 2 . 2
a = ~-- + - (4-32)
an an
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dy 3y 9 Ox
Rz == == + == == (4-33)
an 3E an 3¥

y= (--] + {-- (4-34)
dE 3t

Thus Eg. (4-31) may be written as

aT oT
9|k =-- |k --
34 1 3k an
-- = -3 QA —mmm—m— - B memme———-
at J 13 3E
3T oT
dlx -- 3f(x -- -
X3 an
B + Y mmmmmmmo- (4-35)
an an -

Equation (4-35) is the transformed enthalpy -:quation [Eq. (4-27)] that
must be solved in the transformed plane.

The boundary condition equations are th: same as those for a
layered conduction problem, that is, equality of temperature and normal

heat flux at the interfaces:

T1 = T2 (4-36)
I I
3T &
kg |=- = kp |- (4-37)
on 1 o /2
1 I
For a convection condition:
T
% -- = h (T - Ty (4-38)
on
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Transformation operators are needed to provide a value of the
temperature derivative normal to a surface at a specified point, Again,

from Chapter 2, these are

) 1 T oT
- = me——- Y -~ - B -- (4-39)
on J’y on 9k

To a line of
constant n

On the presumption that the boundary is along the upper or lower edge in

the transformed plane (a line of constant n), Egs. (4-37) and (4-38)

become
Yy 3T R 3T Yy or 8 or
Ke | =cee aa R Y T = ko | wcwa mw - e—eem- -
J/Y 3n J/y 3¢ J/y J7y 3¢
I II I I
1 2
(4~-41)
Y T R ar
-k | =eme - . m——— o = h(T_ - T (4-42
J7y  @n gy 3

Equations (4-41) and (4-42) are the transformed normal heat flux

equations that must be solved in the transformed plane.,

Discretization of the Phase Change Equations

Figure 4-7 depicts a section of the grid in the transformed plane.
Because of the fact that the individual elements in the real plane may
be irreqular and unsymmetric, all eight nodes surrounding the node of
concern must be involved in the differencing. It becomes more apparent
as to the manner in which Eq. (4-31) needs to be differenced if the

equation is "numerically” broken down as follows:
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—-

Schematic of Grid with a General Node

Figure 4-7:
Assignment in the Transformed Plane
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, Hk+1 - gk ar |k ar |k
sz --------- = {1-M) a k -- - k --
At aE o€
i+1/2,5 i-1/2,5
R aT |k ar |k R ar |k
- - kK -- - kK -- - - k --
2 an an 2 23
i+1,5 i-1,3 . i,9+1
ar |k ar |k ar |k
- kK -- + Y kK -- - kK --
tE3 an an
i,3-1 i,+1/2 i,j-1/2 i
ar  |k+1 ar k4!
+M |a k -- - k --
9¢E &
i+1/2,5 i-1/2,5
R ar  |k+1 aT k41 R ar |k+1
- - K -- -k -- - - K --
2 an an 2 3k
i+1,5 i=1,3 i,3+1
ap  |k+1 ar  |k+1 ap  |k+1
- kK -- + Y k -- - kK --
aE an n
i,9-1 i,j+1/2 i,j=1/2 |

(4-43)

As can be seen, the Crank-Nicholson numerical scheme is being used,
Three point differencing is applied to all second order derivatives and
two point differencing to all first order derivatives. Note that the
locations (1+1/2,J), (1-1/2,3), (I,3+1/2), (I,J-1/2) are at the
boundaries of the central node. If the central node should be

undergoing a change of phase, it will have at least one solid and at
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least one all liquid node adjacent to it. assigning a correct value of

conductivity at the "edge" now becomes a concern. The approach used by

Marano [5] and Chao [7]) will be used. The conductivity will be

estimated by simply averaging the conductiv: ties of the two nodes having

this edge in common. The differenced field equation for the phase

change region then becomes

2 U_He T
1,) 1,] 1+ v ] 1,)
Ji,j P mmmmmmm e = (1-M) 4,3 ToTrmToosooes
At 2
k 13
ki,] *Ti-1,4 k 13
N (T, - T, )
1,3 1,3 1-11:]
2
R, = " k k k k k
LA S G AT S RS S
i+1,3 0 7i+1,341 i+1,3-1 i-1,3
2
4,5 [k 3 k k k
= == R st Taan, 3e1 7 Tier,5e1) T X 5-1 (g, 5o
2 .
k k
k,
i,3+1 + i3 ( k _ )
*Yi,§ TTTTTTTmmoos i,3+1 i,3
2
K k
i,3 % Tirg-1 k 13
Yi 3 mmmmmmemm———— (r. ., - T. .
1,] 5 1,3 i,3=1

{Equation continued on next page.)

Ti-l,j+1

koo
i+1,3 i,3
k o
- Ti-1,j-1)_J
K -
- T .
1-1,3-1)J
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k+1 k+1
i+1,3 i,J k+1 k+1
_____________ T, -
+ () alr] p ( i+1,] 113)
K+1 K+1
ki3 *+ ®io,3 SR S
- %, T ; """" i, i-1,3
Bi, 3 LK+ LK+ _k+ e+ LK+ LK )
- ';" 141,93 Ci+1,941 i+1,9-1 i=1,3  i=1,34+1 i=1,3-1
Bi,] K+1 K+ 1 _ k# K+ K+ 1 k41 )
- -;-' 1,541 i+, 5+1 0 Ti-1,9+1 i,9=1 " Ti+1,3-1 i=1,5-1
k+1 mi
i,j+1 i,3 Tk+1 k+1)
+Yl:j ------ ; —————— i,j+1 1.,]
k+1 k+1
i,3 irg-1 (Tk+1 _ mk*1
S % T i,j i,3-1
2 (4-44)

Note that with the insertion of "M" and "1-M", the algorithm can become
anything from purely implicit (value of "M" equal to zero) to purely
explicit (value of "M" equal to 1.0). For an "M" of 0.5, the algorithm

becomes the Crank-Nicholson scheme.

The boundary condition for equality of normal heat flux at a solid

boundary becomes:
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T | 8,1 Ti+1,1 = Ti-1,1
ki 4| ~========- T{ 5 = Ty ,1) = =~===m===- ¢ e
r] 1, 1, ~
i, 1 YL Ji, v YYi, 2
upper
Y{ .4
,Jmax
= kK{ dmax | ——=--===<so----- (T3 44 - T 4 -1)
,Jmax i,jnax i,jmax
Ji,ymax "Yi,jmax
i,imax Ti+1,jmax Tl-l,jmax
Ji,jmax 'Yi,jmax 2
lower
(4-45)

The algorithm is similar for a convective boundary, except that
h(T(I,1) - T infinity) or h(T(I,Jp,y) - T infinity) replaces either the
left or right hand side of Eq.(4-45), depending on whether the

convective boundary is on the upper or lower surface of the grid.

I+ should be noted here that one may wish to account for the latent
heat of fusion for the half-cell at the boundary in the phase change
region for large mesh sizes. Though the mathematical formulation is
correct, it applies only to a point. When numerically modelling a
problem, however, the numerical equivalent applies to a discrete region
in space. In the problem being modelled, cne half of this discrete
region at the boundary absorbs heat in the amount of the latent heat of
fusion. For a large discrete region (large mesh size) the error
introduced in directly applying Eq. (4-45), without modifications to
incorporate the latent heat of fusion in tre half cell, may be

significant.
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Logic for the Numerical Solution of Phase Change Field Equation

One approach for numerically implementing Eq. (4-31) under the
conditions specified by Egs. (4-6) through (4-8) in a manner that is
computationally convenient, is to write three field equations; one each
for the solid, melt, and liquid states. 1In doing this, only the equation
for the melt state needs to be written with an enthalpy term, while the
other two equations can be left in terms of the temperature. The nodal
enthalpy is then calculated separately from the iterated temperature.

The three field equations become

oT ar oT T
5 [k -- 3 [k -- 3 [k -- 3 [x --
aT 1 3E an 9 an
Pog == = -- A ——mmmme ~B e - B e +Y mmmmm————
3t g 3L 3k an an
where H = pgcgT and k = kg at the node (4-46)
3T aT oT oT
3 [ k == 9 |k -- 3 [k =-- 9 [k --
3H 1 XS an 3k an
P --= - A —mmmmemm R e -~ B e +Y mmmmmmeoo
3t J dE ok on an
Hhode Hgm
where k = kg + (kp, = Kg) ====-=m=w-- (4-47)
Hem = Hgm

and T = Ty at the node

aT ar aT aT
3 k == 9 [k -- 9 lx -- 3 [ x --
aT 1 Y3 an -1 4 an
Pcy, == = -5 R it -8B o - R e +Y memmmmm——e
at J 9k f an an

where H = Hy, + frcp (T—Tm)

and k = kyp, at the node (4-48)
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It should be noted that the differencing for the solid and liquid field
equations must be almost identical to the me.t equation (which resulted
in Eq. (4-44)). The only difference is that the specific heat is not
combined with temperature in the time derivative to give the enthalpy
variable. The reason for this is that even ~hough a node may be all
solid or liquid, it may have next to it a noile undergoing a change of
phase. The heat flux through a cell edge adjacent to a melting node will
not be properly accounted for unless there is a proper "averaging" of the
conductivities.

Figure 4-8 graphically depicts the iteration logic for a node in a
phase change region. A check is first made on the previously calculated
enthalpy of a node. Based on this check, either the solid, melt, or
liquid algorithm is used. A new value of erthalpy is calculated, and a
check is performed to see whether this value is within the range of
enthalpies for which the algorithm is valuecd. If the check is positive,
the subroutine moves on to the next node. .f it is negative, a new
algorithm is chosen, based on the new entha.py value. 1In the event that
none of the three algorithms calculate an enthalpy value valid within its
range, a counter in the subroutine (which iicreases by a single integer
each time an algorithm is used for a given node) will terminaté the
calculations, indicating that convergence was unachieveable for a node in
the melt region.

It should be noted that in the melting subroutine a convergence
problem of ten occurs at those points which represent the onset and
conclusion of a phase change. In other words, for example, at the onset

of melting, the solid phase algorithm will calculate an enthalpy that is



110

Start of pass for node (i,))

Determination of the
phase of the node.

JP=1 if H < H
old— "‘'smp

JP=2 if

Hold < H]mp& >Hsm

JPZICH 2 @
JP

=1
] Calculate Hnew& Tnew

-‘\ using equations 4a & 4b.
solid

Yes

No

‘JP=2 Calculate Hnew& Tnew

melt

using equations 5a & 50

TNy

JP=3 |Calculate H & T

new new

liquid lusing equations 6a & 6b

smp=solid melting point

Imp=liquid melting point

‘ End of pass for node (i,))

Figure 4-8: Code Logic for the Melting Subroutine



just slightly above its "legal" range, and tle melt algorithm will
calculate an enthalpy that is just slightly telow its "legal" range.
This convergence problem is alleviated, with virtually no effect on
accuracy, by numerically allowing the “legal" ranges to overlap each
other slightly.

Appendix F lists the key subroutine tha: implements the algorithms
for the enthalpy formulation of the phase change equations. Appendix G
lists the key subroutine that implements the conductive boundary

condition for a phase change region.

Comparison with One-Dimensional Iced Airfoil

Figure 4-9 shows a comparison between results obtained using the
computer code developed here and Marano's [5] one-dimensional code
developed for a composite body with phase change, which was intended for
the purpose of modeling an jced airfoil. Bcth codes determined the
transient response of a "standard" electrotliermal deicer, as defined in
Marano's work in Table 3-6. The standard deicer was initially at a
uniform temperature throughtout. At the in:tial instant of time, a
nichrome heating element was engaged having an equivalent surface heat
flux of 25 watts per square inch. Figure 4-9 plots the movement of the
melt line in a layer of ice as the composit: "warms up", beginning with
initial temperatures of 10 and 20 degrees Farenheit below the melt
temperature. In the current study, the one-dimensional problem was
similated by using two-dimensional concentric cylinders to identify
layer boundaries. This problem, for uniform conditions in the angular

direction and a sufficiently large circle radius compared to layer
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thickness, will model

Marano's one-dimensional problem with negl:gible error due to geometry.
The temperatures predicted by both codes compare favorably.

There is initially a slight overprediction in the melt front, with a
crossing of lines and a subsequent siight underprediction for later times
in the problem. This result would be expected in light of the comparison
with the transient response of the ice/abrusion shield interface
temperature presented in Chapter 3, Figure 3-6, for the pure conduction
problem. As the initial temperature rise ¢t the interface slightly leads
the results shown by Baliga [4), Marano [5., and Chao [7], it is to be
expected that initially the melt line slightly leads in the phase change
problem. Also, as the temperature rise lags slightly later in the
problem, one would expect a corresponding lag in the melt line for the

phase change problem,
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CHAPTER 5 EXPERIMENTAL COMPARISON WITH AN ICED AIRFOIL

Over the years extensive research in the areas of ice accretion,
de-icing, and the effects of icing on aero-performance have been
investigated in a subsonic icing wind tunnel located at the NASA lewis
Research Facility in Cleveland, Ohio. The IRT (Icing Research Tunnel) is
essentially the same as any closed loop subsonic wind tunnel, with two
significant differences. First, the tunnel contains a bank of chillers
which obtain/maintain tunnel temperatures well below freezing. Secondly,
a spray rig exists upstream of the test section to inject a water mist
into the airstream. Under proper conditions, ice will accrete on an
object in the test section. The intent is to simulate the natural
accretion of ice on a body as it would occur in flight under icing
conditions.

Recently, a battery of tests was undertaken in the IRT to
investigate the performance of an electrothermal de-icer pad installed in
a section of a UHTH helicopter rotor blade. A portion of the test
results have been reported and analysed by leffel, et al. [9]. The
electrothermal de-icer used in the blade was designed and manufactured by
the B. F. Goodrich Co. The testing was conducted in four phases: dry
air tests, wet air tests, accretion documentation tests, and, finally,
de-icing tests. The computer code developed in the current work was used

to simulate the thermal response for a section of the blade for one of

the de-icing tests.



Figure 5-1 illustrates the layered construction of the blade
section that was fabricated for the test. The assembly is similar to
that of a standard de-icer, except that the substrate is composed of
three separate layers: an aluminum skin whi:h is wrapped around a
doubler that sits on the D-spar. At the leaiing edge, the doubler
thickens and becomes what is known as the noseblock. The noseblock,
typically, is made from brass, not aluminum. Each of the layers.are
bonded together with either‘an epoxy glue or a film adhesive. Note that
with the bonding materials, there are a total. of thirteen layers, not
including any accreated ice. The heater was divided into eight separate
one inch zones along the arc. Each zone car fire independent of the
other zones.

As the blade was being fabricated, three layers were heavily
instrumented with thermocouples. The thermccouple placements within the
layers are graphically depicted in Fig. 5-2. The thermocouples were
placed at the inner side of the D-spar, the inner side of the heater
mat, and the outer side of the abrasion shiweld. The rows of
thermocouples were placed arc-wise at the h:ater segment centers,
through three "cuts” of the test section. The transient responses of
similarly located thermocouples in the thre: cuts were an indicator of
uniformity of de-icing performance in the span-wise direction. Each cut
also serves as a backup to insure a reading at a specified location in
the event of a thermocouple failure at a similar location.

The material properties of the layers in the test section, along
with average valﬁes of their thicknesses, are presented in Table 5-1.
Modeling a de-icer pad consisting of the trirteen layers (fourteen with

a layer of accreted ice) for a reasonable rumber of nodes along the arc
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ACTUAL BLADE GEOMETRY NUMERICAL SIMULATION
Values of k in BTU/hr-ft-°F Values of k in BTU/hr-ft-°F
Values of & in Square ft/hr Values of & in Square ft/hr
Values of thickness in inches Values of thickness in inches
Layer Properties Thickness Thickness Properties Layer
Abrasion k = 8,7 0.030 0.030 k = B.7 Abrasion
Shield a = 0,15 a = 0.15 Shield
Adhesive k = 0.1 0.0168
Epoxy a = 00,0058
Insulation k = 0,22 0.0138 0.0388 k = 0.1 Insulation
a = 0.0087 a = 0,0058

Adhesive k = 0.1 0.0082

Epoxy a = 0.0058

Heating k = 60.0 0.0065 0.0065 k = 60 Heating

Element a = 1,15 a = 1,15 Element

Adhesive k = 0.1 0.0082

Epoxy a = 0,0058

Insulation k = 0,22 0.138 0.1544 k = 0.1 Insulation
a = 0,0087 a = 0.,0058

Adhesive k = 0.01 0.0082

Epoxy a = 0,0058

Blade k = 8,7 0.02

Skin a = 0,15

Film k = 0.1 0.01

Adhesive a = 0,0058

Aluminum Xk = 102 0.05 0.265 k = 102 Aluminum

Doubler a = 2,83 a = 2,83 D-Spar

Film k = 0,1 0.01

Adhesive a = 0,0058

Aluminum k = 102 0.175

D-Spar a = 2.83

Table 5-1 Actual Blade Thicknesses and Material Properties vs. Those

Used in Numerical Simulation




would be computationally quite difficult; the estimated CPU time would
be extremely large. Thus, a number of layers were "lumped" together in
the numerical simulation of the blade. The adhesive epoxy on both sides
of the upper and lower insulation layers has been lumped into the
insulation. The total thickness assigned :s the sum of three individual
thicknesses, with the material properties heing those of the adhesive.
The blade skin, doubler and D-spar, with the two layers of film
adhesive, have been lumped into a single "DI'-spar" layer. Again, the
total assigned thickness to this layer is the'sum of the five individual
thicknesses, with the assigned properties lLieing those of aluminum.
Lumping the layers in this fashion for the lower insulation and the
D-spar should have very little effect on the thermal transients in the
heater and abrasion shield. In the blade construction the lower
insulation has 16 times the thickness of the film adhesive, with the
properties of the film being on the same order of magnitude as the
insulation. Since the lower insulation is 10 times thicker than the
upper insulation, most of the energy initiazlly generated in the heaters
will be driven toward the abrasion shield. Thus, any lumping below the
lower insulation should have a negligible e¢ffect on the temperature
transients in layers above the heater, especially for short real times
into the problem. Lumping together the upper insulation with two epoxy
layers, and having material values of the epoxy, may slightly retard the
temperature at the abrasion shield. The insulation material values are
slightly higher for both conductivity and diffusivity.

The UH'H airfoil is the same as the NaCA 0012. Using dimensionless
NACA 0012 coordinates provided by Abbot and Doenhoff [61], the

coordinates for those portions of the airfoil containing the heaters
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were generated. These coordinates were assigned node numbers for
subsequent numerical computations, which are displayed in Fig. 5-3.
These nodes represent the coordinate locations for the outer edge of the
abrasion shield. A coordinate generating subroutine, beginning with
these nodes as a starting point, then generated the boundary coordinates
for any inner or outer layers. On the outer edge of the abrasion
shield, the nodes were spaced at one eighth inch intervals. This made
the heater zones one inch wide, with each heater having a node with an
adjacent heater. Nodal locations 21, 29, 37, 45, 53, 61, 69 and 77
represent the thermocouple arc locations on the UH'H test section.

The test case simulated by the numerical code was designated in
Leffel's work as reading 234, position 5 (node 69), thermocouples 53
(abrasion shield) and 26 (heater). For this particular test, the wind
tunnel test speed was 100 mph, the ambient temperature was 16 °F, the
angle of attack was zero degrees, the heater power density was 8 watts
per square inch, and the air liquid water content was 2.2 grams per cubic
meter with an average droplet diameter of 19.2 microns. The accretion
test for this run showed that approximately three eighths of an inch of
ice had accreted on the test section near node 69. For the first cycling
of heater zone "G" (see Fig. 5-3), the heater was engaged for twenty
seconds, and then disengaged for thirty seconds.

A comparison of the thermocouple data generated at position 5 (node
69) with the numerical simulation predictions is presented in Fig. 5-4
for the conditions described above. As can be seen, there is excellent
agreement between the numerical and experimental results for that portion

of the cycle for which the heater is engaged, and for the first third of
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that portion with the heater disengaged. Fcr both the heater and
abrasion shield, the numerical model underpredicts the magnitude of the
heat dissipation in the test case for the latter portion of the cycle
when the heater is disengaged. Since the numerical simulation is
clearly modelling the transients accurately for the "warm up” and the
first portion of "ccol down", there is obvijusly some physical
phenomenon occurring in the test case that is not properly accounted for
in the numerical simulation of the latter portion of the "cool down".
One obvious possibility is the loss of ice (either through natural
shedding or with an "assist" by the initial warming) at this location.
With less ice at this location (ice is an excellent insulator) the heat
would have dissipated much more quickly in the test case. A second
possibility, and one that is much more likely, is that the thermal
properties of the materials in the test section are changing with
temperature. The numerical code can handle this condition with only
slight modification, provided that the material properties are known as
a function of temperature. whether or not material properties for the
insulation, epoxy glue, and film adhesive vary as a function of
temperature is not currently known.

A test case of the numerical code was run to determine the extent
of any geometric effects on temperature transients that current one-and
two-dimensional codes cannot model. The same thickness and materials
were used as in the comparison above, but this time the heater density
was 16 watts per square inch. In this simalation, in which all of the
heaters were fired, a case is provided where effects due to geometry

only could be investigated. Table 5-2 displays the results of selected
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points on layer interfaces along the leadinc edge arc (where curvature
is the highest). As can be seen, the outer layers experience a slight
temperature drop, while the inner layers experience a slight temperature
rise, for those regions near the leading edge. This is exactly what
would be expected. As the thermal wave moves outward from the heater,
there is more mass to absorb the generated energy. As the thermal wave
moves inward from the heater, there is less mass, as a consequence of
curvature, to absorb the generated energy. Consequently, one would
expect a slight temperature drop outward from the heater, and a slight
temperature rise inward from the heater, in contrast to results
predicted using a one-dimensional model. For the particular case run,
the temperature rise at the blade's stagnation point is 2.35 degrees
Farenheit lower due to curvature/geometry. Out of a total temperature
rise of 27.54 degrees expected for the one-iimensional case, this
represents an error of 8.5% at this point due to geometric effects 25
seconds into the problem. Obviously, the rmagnitude of the error will be
primarily a function of distance from the source of the thermal
disturbance, the strength of the thermal disturbance, the degree of
curvature, and the amount of real time intc the problem, for this

particular simulation.
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CHAPTER 6 CONCLUSIONS

In this thesis a computer code has been developed that is capable
of handling any number of irregularly shaped layers in a composite body
undergoing a transient conduction process. The code is capable
of handling thermal generation within any of the layers, as well as
phase change in an outer layer. The computer code was verified for a
wide variety of test problems.

The computer code was employed to simulate the actual transient
thermal response of a UH'H rotor blade equipped with an electrothermal
de-icer system. Good agreement over the majority of a heating cycle
with test data was obtained. Additional runs with the code on the UH1H
blade cross-section clearly showed the effect of geometry/curvature on
the thermal transients.

It is believed that this code can be a very useful tool in airfoil
ice protection design. It may also be used to determine where and under
what conditions one-dimensional codes will yield satisfactory results
(with obvious savings in time and money), and where a two-dimensional
code is required.

Additional work is needed to apply more numerically sophisticated
techniques into the spacial transform, the conduction, and phase
change portions of the problem to accelerate convergence. The run made
for the experimental comparison required 30 minutes of CPU time on a

CRAY-XMP located at the NASA-Lewis Research Facility in Cleveland,

Ohio.
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Finally, additional IRT tunnel experimentation is needed in order to
provide additional insight into the thermc-physics and other related

phenomena effecting electrothermal de-icer performance.
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APPENDIX B

Computer Output of Spacial Transform

Coefficients for a Coérse Mesh
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ALFHA VALUES FOR THE LAYER ARE ¢

2.930280 3.,930252 3.930280 3.930289 3.930271
3.,038534 3,038523 3.038528 3.038530 3.038529
1.761444 1.761443 1.761440 1.761440 1.761452
1.,038439 1,038438 1.038440 1.,038438 1.038441
0.621851 0.6218350 0.62184°9 0.6218B4°9 0.621850
0.,3778359 0.37783°9 0,3778%9 0.377858 0.377860
232761 0.232761 0.232760 0.232761 0.232762
0.145231 0.145231 0.149231 0.,145231 0.,145231
0.091716 0.091716 0,091716 0.,091716 0.091716
0.058583 0.,058583 0.058583 0.,058583 0,058583
0.046394 0.,0463995 0.0463%94 0.046395 0.046394
KETA VALUES FOR THE LAYER ARE ¢

0.000172 0.000035 -0.,000020 -0.000031 -0.,000030
-0,000063 0.000028 -0,000018 -0,000010 -0.000018
-0,000022 0.000005 -0.000005 -0.000007 -0.,000010
-0.000006 0.000000 0.000001 -0.000007 -0.,000002
0.000000 -0,000000 0.000003 -0.,000002 0.000000
0.,000001 -0.000000 0.,00000% 0.000001 0,000001
0,000002 0.000001 0.,000001 0.,000001 0.,000002
0.000002 0.000001 0.00000% 0.000001 0,000002
0.000002 0.,000000 0.00000! 0.000001 0.,000002
0.000001 0.000000 0.00000: 0.,000001 0.000001
-0,000003 -0,000000 0.000009 0.000001 0.000000
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GAMMA VALUES FOR THE LAYER ARE !

27.98501¢6 27.984741 27.,984695 27.984724 27.984741
17.013947 17,013962 17.013870 17.013855 17.013855
10.503345 10.503394 10.503348 10.503335 10.503335
643577075 6.577109 6+3577087 6.577077 6.3577081
4.173593 4,173619 4.173408 4,1734602 4.17359¢9
2,681605 2.681616 2.681611 2.681610 2.6B1606
1.743235 1.743243 1.7432490 1.743237 1.74323¢
1.145768 1.14577¢6 1.145772 1.145768 1.1457¢67
0.760941 0.760944 0.760941 0.760939 0.760939
0.510357 0.51035¢ 0.510354 0.510353 0.510353
0.345494 0.345491 0.345490 0.,345491 0.345491

JACOERIAN VALUES FOR THE LAYER ARE ¢

10.4875¢41 10.48747¢ 10.487505 10.487524 10.487501
7.1%0097 7.190085 7.190073 7.1920073 7.190069
4,301290 4,301294 4.301282 4,30127¢9 4.301294
2,613405 2.613412 2.4613409 2.613404 2.613409
1.611010 1.611012 1.,611010 1.611009 1.611009
1.006612 1.006615 1.006614 1,006613 1,006613
0.636991 0.636993 0,636991 0.634992 0.636993
0.407923 0.407924 0.,407923 0.407923 0.407923
0.,264179 0.264179 0.264179 0.264179 0.264178
0.172911 0.172911 0.172911 0.172911 0.172%910
0.126605 0.126605 0.126605 0.126608 0.126604
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APPENDIX C

Computer Output of Spacial Transform

Coefficients for a Fine Mesh
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0.,234702

0.222154

0.198727

0.177777

0.127331

0.113938

0.101959

0.091242

0.081655
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0.234698

0.222152

0.,198724

0.177782

0.,159053

0.142304

0.127330

0.113938

0.101958

0.091242

0.08165%5

0.073079

O
O
w
[0
w
E
)

o
(o)
[&)]

2
-

(]
~0
~0

0.046903

0.041984

0.037583

0,033645

0.030120

167

ALFHA VALUES FOR THE LAYER ARE

0.,234697

0.222147

0.198725%

0.177784

0.159054

0.14230%

0.12733)

0.113933
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0.08B16355
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0,046%03
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0.,026965

0.019354

0.017331

0.015519

0.013898

0.,0124446

0.011147

0.009983

0.008941

0.00800°9

0.007173

0.006425

0,00515¢6

0.00461°9

0.004138

0.003707

0.003321

0.003141

0.026966

0.024142

0.021615

0.019354

0.017331
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0.012446
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0.009983
0.008941
0.008009
0.007173
0.006425

0.005756

0.00461°9

0.004138

0.003707

0.,003321

0.003141
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0.026965
0.024142
0.0216195
0.019354
0.017331
0.015520
0.013898
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0.008008
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0.0035755
0.005156
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RETA VALUES FOR THE LAYER ARE !

0.000075 0.000019 0.000007 0.000002 0.0000046
-0,000007 0.000018 0.000009 0.000005 0.,000001
-0,000003 0.,000015 0.,000012 0.000009 0,000003

0.000001 0.000010 0.000010 0.000010 0.000008

0.000001 0.000008 0.000011 £.000014 0.000011

0.000002 0.000007 0.000011 0,000013 0.000010

0.000003 0.000005 0.000009 0.000009 0.000007

0,000003 0.000004 0.000007 0.,200007 0.000006

0.000002 0.000003 0.000005 0.000035¢ 0.000005

0,000002 0.000002 0.000003 0.000004 0.000003

0.000002 0.000000 0.900001 0.000001 0.000002

0.000002 -0.,000000 C.0000681 0.000000 0.000001

0.000001 -0.000001 -0.000400 -0,000040 0.000001

0.,000001 0.000000 ~0,0¢0001 -0.,000001 0.,00000¢0

0.000001 -0.000000 -0.000002 -0.000001 0.000000

0.000001 -0.000000 -0.000002 -0,000002 -0.000001

0.000001 -0.000000 -0.000002 -0.000002 -0.000000

0.000001 -0.000001 -0.000G02 -0.,000002 -0.,000001

0.000001 -0.000001 ~-0.,000001 -0,000002 -0,000001

0.000000 ~0.000000 ~-0.000001 -0.,000000 -0.000001



0.,000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
-0,000000
~0.000000
=0.000009
0,060000
0.000000
0.000000

~0.000001

-0.000000

0.000000

0.000000

0.000000

-0.000000

-0.000000

-0.000000

-0.000000

-0.,000001

-0,000001

-0.000001

-0.000000

-0.000000

-0.000000

-0.000000

-0.000000

-0.000000

-0.000000

0.000000

-0.000000

-0,000000
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0.000000
0.000001
0.000001
0.000001
~0.000000
-0.000000
-0.000000
-0.000000
-0.,000001
-0.000001
-0,000001
-0.000001
-0.000001
-0.000001
-0.000000
-0.000000
-0.000000
0.000000
0.000000
0.000000

0.000000

0.000000

0.000001

0.000001

0.0000090

-0.,000000

-0.000000

-0,000000

-0.,000000

-0.,000000

-0.000000

-0.000000

-0.,000000

-0.000001

-0.,000001

-0.000000

-0.,000000

-0.000000

0.000000

0.000000

0.000000

-0.000000

-0.000001

0.000000

0.000001

0.000000

0.000000

0.000000

-0.000000

-0,000000

~0.000000

-0.000000

-0.000000

-0.000000

-0.000000

-0,000000

-0.,000000

-0.000000

-0.000000

0.000000

0.000000

0.000000

~-0.000000



1.774610

1.588738

1,140352

1.021104

0.,914365

0,B18B146

0.733284

0.656713

0,588163

0.526791

0.471841

0.,422640

0.378584

0.3391335

0.303809

0.272174

0.243843

1.774612

1.588765

1.,422443

1.27359%91

1.140362

1.021116

0.914376

0.818828

0.,733292

0.656721

0.5881648

0.526774

0.471842

0.422640

0.378585

0.339136

0.303810

0,27217%

0.243844
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GAMMA VALUES FOR THE LAYER ARE !

1.98221¢

1.774572

1.588745%

1.42244;

1,2735%¢

1.,14037¢

1.02113¢

0.91438¢

0.81884:

0.,733307

0.656732

0.58817%

0.526802

0.471850

0.42264

0.,3785843

0.339138

0.303812

1272176

0.2438414

1.774553

1.588731

1.140371

1.021133

0,914397

0.818851

0.733317

0.656744

0.5881%90

0.526814

0,471880

0.422658

0.3785956

0.339143

0.,303814

272177

0.243845

1.774546

1.588715

1.140366
1.021129
0.,9143%96
0.818850
0,733320
0.656748
0.588195
0.5268B17
0.4718484
0.422658
0.378599
0.339146
0.,303817
0.272179

0.243844%



0.2184469

0.195744

0.175389

0,157157

0.140826

0,126197

0.113093

0.101353

0,090836

0.081413

0.072971

0.065407

0.,052336

0.047114

0.042237

0.037B6é

0.033949

0.030439

0,024473

0.218470

0.140827

0.126198

0.,1130%93

0.101353

0.090836

0.081413

0.0729790

0.065406

0.052556

0.047113

0.042237

0.037866

0.033949

0,030439

172

0,218471

0.193745

0.140828
0.126199
0.113294
0.101354
0.090836
0.081413
0.072970
0.065406
0.058628
0.052555
0.047113
0.042236
0.037865
0,033948
0.030438
0,027292

0.024472

0.218471

0.195746

0.175392

0.137160

0.140829

0.,101359

0.090837

0.081414

0.,072971

0.065406

0.¢42235

0.037865

0.033948

0.230438

0.218472

0.195747

0,175393

0.157161

0.1408B30

0.126201

0.1130%6

0.101355

0.090837

0.081414

0.072971

0.065406

0.047112

0.042235

0.037864

0.,033948

0.030438



0.682092
0.627883
0.561898
0.3502869
0.450071
0.402837
0.3460581
0.322771
0.288938
0,258662
0.,231568
0.207322
0.,185621
0.166201
0.148815
0.133254
0,119324
0.10685%
0.095693

0.085700

0.682072

0.627881

0.561895

0.502877

0.450076

0.402837

0.3460582

0.322773

0.288940

0.258664

0.231570

0.,207323

0.,166200

0.148815

0.133254

0.119324

0.1068356

0.0956%94

0.085700
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JACORIAN VALUES FOR THE LAYER ARE

0.682070

0.62786%

0.561894

0,50287%

0.450078

0.402841

0.360583

0.322775

0.288%44

0.258667

0.,231572

0.20732

i

0.166201

0.148817

0,133254

0.,11932%

0.10685%

0.095693

0.085700

0.6B2063

0.627861

0.561890

0.502873

0.450073

0.,402840

0.3460588

0.,322780

0.288945

0.238670

0.207327

0.18B5626

0.156204

0.14881°%9

0.1332568

0.119325

0.106835

0.095692

0.0854699

0.6B82061
0.627856
0.561884
0.502873
0.450076
0.402844
0.360589
0.322783
0.288948
0.258671
0.231577

0.,207327

0,166204
0.148818
0.133256
0.119326
0.106856
0.095692

0.085598



0.076753
0.068743
0.061572
0,055151

0.049403

0.022887
0.020508
0.01837¢6
0.016467
0.014757
0.013224
0.,011852
0.010622
0.009520

0.008767

0.076754

0.068743

0.061572

0.055151

0.04%7403

0.044255

0.039646

0.018376

0.016467

0.,014757

0.013225

0.,011832

0.010622

0.009520

0.008767

174

0.0767353
0.068743
0.061572
0.,0355152
0.049403
0.044256

0.039646

0,018376
0.016467
0.014756
0.013224
0.011852
0.010622
0.009520

0.008767

0.076753

0.068744

0.061573

0.055153

0.049404

0.044256

0.03%964%

0.031820

0.0z

rd
w
[&4]
[as]

9

<
O
48]
[&)]
w
D
68

0.0:2

rJ
rJ
[99]

87

0.020507

0.018376

0.016466

0.,014756

0.013224

0.011851

0.010622

0.0093520

0.008767

0.,076752
0.068743
0.061573
0.055153
0.,049404
0.044256

0.039646

0.016466
0.014756
0.013224
0.011831
0.010622
0.009520

0.008767



175

APPENDIX D

Computer Subroutine for Transformed

Conduction Eguation
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APPENDIX E

Computer Subroutine for Transformed

Conductive Boundary Equation
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APPENDIX F

Computer Subroutine for Transformed

Phase Change Equations
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APPENDIX G

Computer Subroutine for Transformed Conductive
Boundary Condition where One Layer's Boundary

Undergoes a Change of Phase
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